留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑河床渗透性影响的基流退水过程解析模型

王国梁 梁修雨

王国梁, 梁修雨. 考虑河床渗透性影响的基流退水过程解析模型[J]. 地质科技通报, 2023, 42(4): 201-209. doi: 10.19509/j.cnki.dzkq.tb20230020
引用本文: 王国梁, 梁修雨. 考虑河床渗透性影响的基流退水过程解析模型[J]. 地质科技通报, 2023, 42(4): 201-209. doi: 10.19509/j.cnki.dzkq.tb20230020
Wang Guoliang, Liang Xiuyu. An analytical model for baseflow recession considering riverbank permeability[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 201-209. doi: 10.19509/j.cnki.dzkq.tb20230020
Citation: Wang Guoliang, Liang Xiuyu. An analytical model for baseflow recession considering riverbank permeability[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 201-209. doi: 10.19509/j.cnki.dzkq.tb20230020

考虑河床渗透性影响的基流退水过程解析模型

doi: 10.19509/j.cnki.dzkq.tb20230020
基金项目: 

国家自然科学基金项目 41977165

深圳市高等院校稳定支撑计划项目 20220814221815001

详细信息
    作者简介:

    王国梁(2000—), 男, 现正攻读力学专业硕士学位, 主要从事地下水数值模拟研究工作。E-mail: 12232249@mail.sustech.edu.cn

    通讯作者:

    梁修雨(1983—), 男, 助理教授, 主要从事地下水资源与环境方向的研究工作。E-mail: liangxy@sustech.edu.cn

  • 中图分类号: P641

An analytical model for baseflow recession considering riverbank permeability

  • 摘要:

    基流退水过程分析是流域尺度平均水文地质参数估计的有效方法之一, 但传统基流退水过程模型未考虑河床的渗透性, 其对参数估计的影响并不清楚。针对这个问题, 建立了降水入渗及河水位波动驱动下, 考虑河床渗透性影响的潜水含水层地下水流数学模型, 运用格林函数方法推导出水位及流量的解析解, 并利用数值模拟验证了解析解。结果表明, 在降水入渗强度波动的驱动下, 河床渗透性越小, 降水入渗引起更高的地下水位上升, 更低的基流量峰值, 更慢的基流退水过程; 河水位波动驱动下, 河床渗透性更低时, 地下水位对河水位波动的响应更弱, 地表水-地下水交互通量更小; 河床渗透性显著影响基流退水曲线, 退水早期, 低渗透性的河床导致曲线斜率远大于3, 而退水后期, 曲线斜率趋近于1, 且其不受河床渗透性影响。当河床渗透性较差时, 由于忽略了河床渗透性的影响, 传统模型会过高估计基流量, 过低估计含水层的渗透系数。

     

  • 图 1  潜水含水层剖面地下水流的概念模型

    h(x, t)为地下水的水头;K为含水层渗透系数;W(t)为含水层随时间变化的补给率;Sy为给水度;Kb为河床渗透系数;b为河床厚度;hb(t)为随时间波动的河床水位

    Figure 1.  Schematic diagram of groundwater flow in a cross-section of unconfined aquifers

    图 2  入渗补给波动下地下水位及基流的解析解和数值解对比

    a.2次降水入渗补给事件;b.不同位置的地下水位;c.基流;WD为降水入渗补给强度;hD为河床水位;QD为基流量

    Figure 2.  Comparison of the analytical solution and the numerical solution for hydraulic heads and baseflow induced by time-varying recharge

    图 3  河水位波动下地下水位及基流解析解和数值解对比

    a.河水位及不同位置地下水位;b.基流

    Figure 3.  Comparison of the analytical solution and the numerical solution for hydraulic heads and baseflow induced by time-varying river stages

    图 4  地下水位和基流在不同α影响下对补给波动的响应

    a.2次降水入渗补给事件;b.xD=0.5处地下水位;c.基流

    Figure 4.  Responses of hydraulic heads and baseflow induced by time-varying recharge

    图 5  xD=0.5处地下水位和基流在不同α影响下对河水位波动的响应

    a.河水位及不同α的地下水位;b.不同α的基流

    Figure 5.  Responses of hydraulic heads at xD=0.5 and baseflow induced by time-varying river stages

    图 6  地下水位在不同α影响下对河水位波动的响应

    a.α=0.1;b.α=1;c.α=10;d.无河床影响解

    Figure 6.  Responses of hydraulic heads induced by time-varying river stages for different α

    图 7  基流在WD=0,hbD=0.6时不同α影响下的变化

    Figure 7.  Change in baseflow with time for different α when WD=0 and hbD=0.6

    图 8  不同α的影响下-dQD/dtDQD的双对数坐标图

    Figure 8.  log-log plots for -dQD/dtD vs. QD for different α

    图 9  不同α的退水曲线指数b随时间的变化

    Figure 9.  Changes in exponent b of the baseflow recession hydrograph with time at different α

  • [1] Fetter C W. Applied hydrogeology[M]. [S. l. ]: Waveland Press, 2018.
    [2] Freeze R A, Cherry J A. Groundwater[M]. [S. l. ]: Prentice Hall, 1979.
    [3] 中国地质调查局. 水文地质手册[M]. 北京: 地质出版社, 2012.

    China Geological Survey. Handbook of hydrogeology[M]. Beijing: Geological Publishing House, 2012(in Chinese).
    [4] 成建梅, 罗一鸣. 岩溶多重介质地下水模拟技术及应用进展[J]. 地质科技通报, 2022, 41(5): 220-229. doi: 10.19509/j.cnki.dzkq.2022.0220

    Cheng J M, Luo Y M. Overview of groundwater modeling technology and its application in karst areas with multiple-void media[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 220-229(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0220
    [5] 郑小康, 杨志兵. 岩溶含水层饱和-非饱和流动与污染物运移数值模拟[J]. 地质科技通报, 2022, 41(5): 357-366. doi: 10.19509/j.cnki.dzkq.2022.0211

    Zheng X K, Yang Z B. Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 357-366(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0211
    [6] Liang X, Zhan H, Zhang Y K, et al. Base flow recession from unsaturated-saturated porous media considering lateral unsaturated discharge and aquifer compressibility[J]. Water Resources Research, 2017, 53(9): 7832-7852. doi: 10.1002/2017WR020938
    [7] Brutsaert W, Lopez J P. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains[J]. Water Resources Research, 1998, 34(2): 233-240. doi: 10.1029/97WR03068
    [8] Brutsaert W, Nieber J L. Regionalized drought flow hydrographs from a mature glaciated plateau[J]. Water Resources Research, 1977, 13(3): 637-643. doi: 10.1029/WR013i003p00637
    [9] 徐磊磊, 刘敬林, 金昌杰, 等. 水文过程的基流分割方法研究进展[J]. 应用生态学报, 2011, 22(11): 3073-3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201111041.htm

    Xu L L, Liu J L, Jin C J, et al. Baseflow separation methods in hydrological process research: A review[J]. Chinese Journal of Applied Ecology, 2011, 22(11): 3073-3080(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201111041.htm
    [10] Rupp D E, Selker J S. On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers[J]. Water Resources Research, 2006, 42(12): W12421.
    [11] Boussinesq J. Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources[J]. Journal de Mathématiques Pures et Appliquées, 1904, 10: 5-78.
    [12] Polubarinova-Kochina P Y. Theory of ground water movement[M]. Princeton: Princeton University Press, 2015.
    [13] Boussinesq J. Sur le débit, en temps de sécheresse, d'une source alimentée par une nappe d'eaux d'infiltration[J]. CR Hebd. Seanc. Acad. Sci. Paris, 1903, 136: 1511-1517.
    [14] Troch P A, Berne A, Bogaart P, et al. The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange[J]. Water Resources Research, 2013, 49(9): 5099-5116.
    [15] Rupp D E, Selker J S. Drainage of a horizontal Boussinesq aquifer with a power law hydraulic conductivity profile[J]. Water Resources Research, 2005, 41(11): W11422.
    [16] Hayek M. Accurate approximate semi-analytical solutions to the Boussinesq groundwater flow equation for recharging and discharging of horizontal unconfined aquifers[J]. Journal of Hydrology, 2019, 570: 411-422.
    [17] Xian Y, Jin M, Zhan H. Buffer effect on identifying transient streambed hydraulic conductivity with inversion of flood wave responses[J]. Journal of Hydrology, 2020, 580: 124261.
    [18] Liang X, Zhan H, Schilling K. Spatiotemporal responses of groundwater flow and aquifer-river exchanges to flood events[J]. Water Resources Research, 2018, 54(3): 1513-1532.
    [19] Liang X, Zhang Y K. A new analytical method for groundwater recharge and discharge estimation[J]. Journal of Hydrology, 2012, 450: 17-24.
    [20] Liang X, Zhang Y K. Analytic solutions to transient groundwater flow under time-dependent sources in a heterogeneous aquifer bounded by fluctuating river stage[J]. Advances in Water Resources, 2013, 58: 1-9.
  • 加载中
图(9)
计量
  • 文章访问数:  374
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 录用日期:  2023-03-31
  • 修回日期:  2023-03-30

目录

    /

    返回文章
    返回