留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地下水位微动态反演含水层水文地质参数研究进展

张卉 王广才 史浙明 周鹏鹏

张卉, 王广才, 史浙明, 周鹏鹏. 基于地下水位微动态反演含水层水文地质参数研究进展[J]. 地质科技通报, 2023, 42(4): 138-146. doi: 10.19509/j.cnki.dzkq.tb20230029
引用本文: 张卉, 王广才, 史浙明, 周鹏鹏. 基于地下水位微动态反演含水层水文地质参数研究进展[J]. 地质科技通报, 2023, 42(4): 138-146. doi: 10.19509/j.cnki.dzkq.tb20230029
Zhang Hui, Wang Guangcai, Shi Zheming, Zhou Pengpeng. Advances in estimation of aquifer hydrogeological parameters based on microfluctuations of groundwater level[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 138-146. doi: 10.19509/j.cnki.dzkq.tb20230029
Citation: Zhang Hui, Wang Guangcai, Shi Zheming, Zhou Pengpeng. Advances in estimation of aquifer hydrogeological parameters based on microfluctuations of groundwater level[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 138-146. doi: 10.19509/j.cnki.dzkq.tb20230029

基于地下水位微动态反演含水层水文地质参数研究进展

doi: 10.19509/j.cnki.dzkq.tb20230029
基金项目: 

国家自然科学基金重点项目 42030705

山西省基础研究计划(自由探索类)青年项目 202203021222114

详细信息
    作者简介:

    张卉(1993—), 女, 讲师, 主要从事地震地下水研究工作。E-mail: zhanghui03@tyut.edu.cn

    通讯作者:

    王广才(1962—), 男, 教授, 主要从事水文地质方面的教学与科研工作。E-mail: wanggc@cugb.edu.cn

  • 中图分类号: P641

Advances in estimation of aquifer hydrogeological parameters based on microfluctuations of groundwater level

  • 摘要:

    研究水文地质参数随时间变化的特征及机理有利于深入了解地下水系统特性。地下水位微动态对于天然周期性荷载固体潮及气压加载作用的响应则提供了一种经济有效的含水层水文地质参数计算方法。系统梳理了地下水对于固体潮响应、气压响应以及综合固体潮及气压响应求解参数的理论模型,介绍了井-含水层系统受地震及采矿活动影响过程中水文地质参数随时间变化的情况。气压响应方法也可用于含水层脆弱性的评估。分析认为,研究地下水位微动态有利于在时间及空间尺度上了解地壳运动及人类活动对含水层系统的影响。最后提出了该领域未来研究方向主要包括:井孔皮肤效应及储积效应的应用、结合多种确定基础地质参数的方法提高水文地质参数计算精度、探索地下水超采及地面沉降等其他人类活动对区域尺度含水层系统的影响。

     

  • 图 1  井孔水位微动态固体潮和气压响应概念模型图(a),实测大气压数据时间序列(b),对应实测大气压数据频率域(c),实测非承压条件下潜水井水位时间序列(d), 对应潜水井水位频率域(e), 理论固体潮计算结果时间序列(f), 对应固体潮频率域(g), 实测承压条件下承压井水位时间序列(h), 对应承压井水位频率域(i), 频率域中上标AT、ET分别代表气压、固体潮主导分波,S1K1S2M2为与其相关的日波及半日波,φ1φ2代表相同频率的固体潮及气压谐波加载作用下引起的地下水位相位响应(改自文献[26])

    Figure 1.  Conceptual overview of the groundwater system response to earth tides and barometric pressure(a), and time series of measured barometric pressure(b), barometric pressure in frequency domain(c), water level measured in unconfined aquifer(d), amplitude spectrum of water level measured in unconfined aquifer (e), computed theoretical earth tides in time domain(f), theoretical earth tides in frequency domain(g), time series of measured confined water level(h), confined water level in frequency domain(i)

    图 2  实验室及野外观测到的渗透率与动态应变幅值变化关系图总结(引自文献[54])

    黑色填充框表示频率≥10 Hz的室内实验; 白色框为实验室动态应力变化测试结果; 灰色线框为野外天然情况下观测结果

    Figure 2.  Summary of the permeability changes documented in the laboratory and field as a function of dynamic strain

  • [1] 汪成民. 地下水微动态研究[M]. 地震出版社, 1988.

    Wang C M. Study on the groundwater micro-fluctuation[M]. Seismological Press, 1988 (in Chinese).
    [2] 梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5): 199-219. doi: 10.19509/j.cnki.dzkq.2022.0199

    Liang Y P, Shen H Y, Gao X B. Review of research progress of karst groundwater in northern China[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 199-219 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0199
    [3] 车用太. 井孔水位的微动态特征综述[J]. 水文地质工程地质, 1984, 11(4): 18-22, 42. doi: 10.16030/j.cnki.issn.1000-3665.1984.04.003

    Che Y T. A review of the micro-fluctuation characteristics of well bore water levels[J]. Hydrogeology and Engineering Geology, 1984, 11(4): 18-22, 42 (in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.1984.04.003
    [4] 张淑亮, 李宏伟, 吕芳, 等. 基于数值模拟与含水层垂向应力反演的静乐井水位异常分析[J]. 震灾防御技术, 2019, 14(4): 854-868. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201904017.htm

    Zhang S L, Li H W, Lü F, et al. Analysis of the Jingle well water-level anomaly based on numerical simulation and aquifer stress inversion[J]. Technology for Earthquake Disaster Prevention, 2019, 14(4): 854-868 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201904017.htm
    [5] 张艳. 承压含水层井水位对循环荷载响应的水动力过程研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2020.

    Zhang Y. Research on hydrodynamic process of response of well water level of confined aquifer to cyclic loading[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2020 (in Chinese with English abstract).
    [6] Shi Z M, Wang C Y, Yan R. Frequency-dependent groundwater response to earthquakes in carbonate aquifer[J]. Journal of Hydrology, 2021, Part D(603): 127153.
    [7] Hsieh P A, Bredehoeft J D, Farr J M. Determination of aquifer transmissivity from Earth tide analysis[J]. Water Resources Research, 1987, 23(10): 1824-1832. doi: 10.1029/WR023i010p01824
    [8] Roeloffs E. Poroelastic techniques in the study of earthquake-related hydrologic phenomena[J]. Advances in Geophysics, 1996, 37(1): 135-195.
    [9] Bredehoeft J D. Response of well-aquifer systems to Earth tides[J]. Journal of Geophysical Research, 1967, 72(12): 3075-3087 doi: 10.1029/JZ072i012p03075
    [10] Elkhoury J E, Brodsky E E, Agnew D C. Seismic waves increase permeability[J]. Nature, 2006, 441(29): 1135-1138.
    [11] Rojstaczer S. Determination of fluid flow properties from the response of water levels in wells to atmospheric loading[J]. Water Resources Research, 1988, 24(11): 1927-1938. doi: 10.1029/WR024i011p01927
    [12] Cutillo P A, Bredehoeft J D. Estimating aquifer properties from the water level response to earth tides[J]. Ground Water, 2011, 49(4): 600-610. doi: 10.1111/j.1745-6584.2010.00778.x
    [13] Acworth R I, Halloran L J S, Rau G C, et al. An objective frequency domain method for quantifying confined aquifer compressible storage using Earth and atmospheric tides[J]. Geophysical Research Letters, 2016, 43(22): 11671-11678.
    [14] 刘贺, 罗勇, 雷坤超, 等. 北京新航城地区地面沉降演化规律及多源监测方法对比研究[J]. 地质科技通报, 2023, 42(1): 398-406. doi: 10.19509/j.cnki.dzkq.tb20210456

    Liu H, Luo Y, Lei K C, et al. Evolution of land subsidence and comparative study on multi-source monitoring methods in New Airlines City of Beijing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 398-406 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.tb20210456
    [15] Adhikary D, Guo H. Modelling of longwall mining-induced strata permeability change[J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 345-359. doi: 10.1007/s00603-014-0551-7
    [16] Zhang Y, Manga M, Fu L Y. Changes of hydraulic transmissivity orientation induced by tele-seismic waves[J]. Water Resources Research, 2022, 58(11): e2022WR033272. doi: 10.1029/2022WR033272
    [17] Kaleris V K, Ziogas A I. Using electrical resistivity logs and short duration pumping tests to estimate hydraulic conductivity profiles[J]. Journal of Hydrology, 2020, 590(6): 125277.
    [18] Sun X L, Xiang Y, Shi Z M, et al. Sensitivity of the response of well-aquifer systems to different periodic loadings: A comparison of two wells in Huize, China[J]. Journal of Hydrology, 2019, 572: 121-130. doi: 10.1016/j.jhydrol.2019.02.029
    [19] 张丽华, 潘保芝, 单刚义. 岩心样品孔隙度渗透率实验研究进展[J]. 地球物理学进展, 2018, 33(2): 777-782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802043.htm

    Zhang L H, Pan B Z, Shan G Y. Progress in experimental research on porosity and permeability of core samples[J]. Progress in Geophysics, 2018, 33(2): 777-782 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802043.htm
    [20] 杨坤, 王付勇, 曾繁超, 等. 基于数字岩心分形特征的渗透率预测方法[J]. 吉林大学学报: 地球科学版, 2020, 50(4): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202004007.htm

    Yang K, Wang F Y, Zen F C, et al. Permeability prediction based on fractal characteristics of digital rock[J]. Journal of Jilin University: Earth Science Edition, 2020, 50(4): 1003-1011(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202004007.htm
    [21] Allègre V, Brodsky E E, Xue L, et al. Using earth-tide induced water pressure changes to measure in situ permeability: A comparison with long-term pumping tests[J]. Water Resources Research, 2016, 52(4): 3113-3126. doi: 10.1002/2015WR017346
    [22] David K, Timms W A, Barbour S L, et al. Tracking changes in the specific storage of overburden rock during longwall coal mining[J]. Journal of Hydrology, 2017, 553: 304-320. doi: 10.1016/j.jhydrol.2017.07.057
    [23] Zhang S C, Shi Z M, Wang G C. Comparison of aquifer parameters inferred from water level changes induced by slug test, earth tide and earthquake: A case study in the three Gorges area[J]. Journal of Hydrology, 2019, 579: 124169. doi: 10.1016/j.jhydrol.2019.124169
    [24] 张卉. 井-含水层系统对周期性荷载的响应及受地震影响的研究[D]. 北京: 中国地质大学(北京), 2021.

    Zhang H. The response of well-aquifer system to periodic loadings and earthquakes[D]. Beijing: China University of Geosciences (Beijing), 2021 (in Chinese with English abstract).
    [25] Doan M L, Brodsky E E, Prioul R, et al. Tidal analysis of borehole pressure: A tutorial[R]. Cambridge: Schlumberger-Doll Research Report, 2006.
    [26] Mcmillan T C, Rau G C, Timms W A, et al. Utilizing the impact of Earth and atmospheric tides on groundwater systems: A review reveals the future potential[J]. Reviews of Geophysics, 2019, 57(2): 218-315.
    [27] Chapman S, Malin S R C. Atmospheric tides, thermal and gravitational: Nomenclature, notation and new results[J]. Journal of the Atmospheric Sciences, 1970, 27(5): 707-710. doi: 10.1175/1520-0469(1970)027<0707:ATTAGN>2.0.CO;2
    [28] Jacob C E. On the flow of water in an elastic artesian aquifer[J]. Transactions American Geophysical Union, 1940, 21(2): 574-586. doi: 10.1029/TR021i002p00574
    [29] Acworth R I, Rau G C, Halloran L, et al. Vertical groundwater storage properties and changes in confinement determined using hydraulic head response to atmospheric tides[J]. Water Resources Research, 2017, 53(4): 2983-2997. doi: 10.1002/2016WR020311
    [30] Rojstaczer S, Agnew D C. The influence of formation material properties on the response of water levels in wells to Earth tides and atmospheric loading[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B9): 12403-12411. doi: 10.1029/JB094iB09p12403
    [31] 史浙明. 地下水位同震响应特征及机理研究[D]. 北京: 中国地质大学(北京), 2015.

    Shi Z M. Characteristic and mechanism of co-seismic hydrological response induced by earthquakes[D]. Beijing: China University of Geosciences (Beijing), 2015 (in Chinese with English abstract).
    [32] Rasmussen T C, Crawford L A. Identifying and removing barometric pressure effects in confined and unconfined aquifers[J]. Ground Water, 1997, 35(3): 502-511. doi: 10.1111/j.1745-6584.1997.tb00111.x
    [33] Butler J J, Jin W, Mohammed G A, et al. New insights from well responses to fluctuations in barometric pressure[J]. Ground Water, 2011, 49 (4): 525-533. doi: 10.1111/j.1745-6584.2010.00768.x
    [34] Hussein M, Odling N E, Clark R A. Borehole water level response to Barometric pressure as an indicator of aquifer vulnerability[J]. Water Resources Research, 2013, 49(10): 7102-7119. doi: 10.1002/2013WR014134
    [35] Rau G C, Cuthbert M O, Acworth R I, et al. Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation[J]. Hydrology and Earth System Sciences, 2020, 24(12): 6033-6046. doi: 10.5194/hess-24-6033-2020
    [36] 何冠儒, 史浙明. 地下水对气压和固体潮响应研究进展[J]. 地震研究, 2021, 44(4): 541-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202104004.htm

    He G R, Shi Z M. Advance in the groundwater level response to barometric pressure and earth tide[J]. Journal of Seismological Research, 2021, 44(4): 541-549 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202104004.htm
    [37] Kamp G, Gale J E. Theory of earth tide and barometric effects in porous formations with compressible grains[J]. Water Resources Research, 1983, 19(2): 538-544. doi: 10.1029/WR019i002p00538
    [38] Merritt M L. Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, oceantide, and barometric effects, Collier and Hendry Counties, Florida[R]. [S. l. ]: USGS Water-Resources Investigations Report, 2004.
    [39] Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
    [40] Wang C Y, Doan M L, Xue L, et al. Tidal response of groundwater in a leaky aquifer-application to Oklahoma[J]. Water Resources Research, 2018, 54(10): 8019-8033. doi: 10.1029/2018WR022793
    [41] Cooper H H. The equation of groundwater flow in fixed and deforming coordinates[J]. Journal of Geophysical Research, 1966, 71(20): 4785-4790. doi: 10.1029/JZ071i020p04785
    [42] Acworth R I, Brain T. Calculation of barometric efficiency in shallow piezometers using water levels, atmospheric and earth tide data[J]. Hydrogeology Journal, 2008, 16(8): 1469-1481, 1063. doi: 10.1007/s10040-008-0333-y
    [43] Rau G C, Acworth I, Halloran L J, et al. Quantifying compressible groundwater storage by combining cross-hole seismic surveys and head response to atmospheric tides[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 1910-1930.
    [44] Lai G J, Ge H K, Wang W L. Transfer functions of the well-aquifer systems response to atmospheric loading and Earth tide from low to high-frequency band[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 1904-1924.
    [45] Shi Z M, Wang G C. Aquifers switched from confined to semiconfined by earthquakes[J]. Geophysical Research Letters, 2016, 43(21): 11166-11172.
    [46] Lai G J, Jiang C S, Han L B, et al. Co-seismic water level changes in response to multiple large earthquakes at the LGH well in Sichuan, China[J]. Tectonophysics, 2016, 679: 211-217.
    [47] Rutter H K, Cox S C, Ward N F D, et al. Aquifer permeability change caused by a near-field earthquake, Canterbury, New Zealand[J]. Water Resources Research, 2016, 52(11): 8844-8861.
    [48] Shi Y, Liao X, Zhang D, et al. Seismic waves could decrease the permeability of the shallow crust[J]. Geophysical Research Letters, 2019, 46(12): 6371-6377.
    [49] Zhang H, Shi Z M, Wang G C, et al. Large earthquake reshapes the groundwater flow system: Insight from the water-level response to earth tides and atmospheric pressure in a deep well[J]. Water Resources Research, 2019, 55(5): 4207-4219.
    [50] Sun X L, Xiang Y. Heterogeneous permeability changes along a fault zone caused by the Xingwen M5.7 earthquake in SW China[J]. Geophysical Research Letters, 2019, 46(24): 14404-14411.
    [51] Weaver K C, Doan M L, Cox S C, et al. Tidal behavior and water-level changes in gravel aquifers in response to multiple earthquakes: A case study from New Zealand[J]. Water Resources Research, 2019, 55(2): 1263-1278.
    [52] Yan R, Wang G C, Shi Z M. Sensitivity of hydraulic properties to dynamic strain within a fault[J]. Journal of Hydrology, 2016, 543(B): 721-728.
    [53] Zhang H, Shi Z M, Wang G C, et al. Different sensitivities of earthquake-induced water level and hydrogeological property variations in two aquifer systems[J]. Water Resources Research, 2021, 57(5): e2020WR028217.
    [54] Manga M, Beresnev I, Brodsky E E, et al. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms[J]. Reviews of Geophysics, 2012, 50(2): RG2004.
    [55] 白阳, 齐跃明, 项敏, 等. 南梁煤层开采地下水系统演化规律[J]. 地质科技通报, 2022, 41(1): 183-192. doi: 10.19509/j.cnki.dzkq.2022.0034

    Bai Y, Qi Y M, Xiang M, et al. Evolution law of groundwater system with multiple seams mining in Nanliang Coal Mine[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 183-192 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0034
    [56] Forster I, Enever J. Hydrogeological response of overburden strata to underground mining[R]. Office of Energy Report, 1992.
    [57] Miao X X, Cui X M, Wang J A, et al. The height of fractured water-conducting zone in undermined rock strata[J]. Engineering Geology, 2011, 120(1/4): 32-39.
    [58] Qu S, Shi Z M, Wang G C, et al. Using water-level fluctuations in response to Earth-tide and barometric-pressure changes to measure the in-situ hydrogeological properties of all overburden aquifer in a coalfield[J]. Hydrogeology Journal, 2020, 28(4): 1465-1479.
    [59] Qu S, Wang G C, Shi Z M, et al. Temporal changes of hydraulic properties of overburden aquifer induced by longwall mining in Ningtiaota coalfield, northwest China[J]. Journal of Hydrology, 2020, 582: 124525.
    [60] Odling N E, Serrano R P, Hussein M, et al. Detecting the vulnerability of groundwater in semi-confined aquifers using barometric response functions[J]. Journal of Hydrology, 2015, 520: 143-156.
    [61] Gao X H, Sato K, Horne R N. General solution for tidal behavior in confined and semiconfined aquifers considering skin and wellbore storage effects[J]. Water Resources Research, 2020, 56(6): e2020WR027195.
  • 加载中
图(2)
计量
  • 文章访问数:  792
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 录用日期:  2023-03-10
  • 修回日期:  2023-03-08

目录

    /

    返回文章
    返回