留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非稳态地下水流系统响应降雨变化的数值模型研究

张萧琅 焦赳赳

张萧琅, 焦赳赳. 非稳态地下水流系统响应降雨变化的数值模型研究[J]. 地质科技通报, 2023, 42(4): 154-161. doi: 10.19509/j.cnki.dzkq.tb20230030
引用本文: 张萧琅, 焦赳赳. 非稳态地下水流系统响应降雨变化的数值模型研究[J]. 地质科技通报, 2023, 42(4): 154-161. doi: 10.19509/j.cnki.dzkq.tb20230030
Zhang Xiaolang, Jimmy Jiu Jiao. Numerical modelling study on non-steady-state groundwater flow systems in response to changing rainfall[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 154-161. doi: 10.19509/j.cnki.dzkq.tb20230030
Citation: Zhang Xiaolang, Jimmy Jiu Jiao. Numerical modelling study on non-steady-state groundwater flow systems in response to changing rainfall[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 154-161. doi: 10.19509/j.cnki.dzkq.tb20230030

非稳态地下水流系统响应降雨变化的数值模型研究

doi: 10.19509/j.cnki.dzkq.tb20230030
基金项目: 

国家自然科学基金项目 41572208

详细信息
    作者简介:

    张萧琅(1992—),男,主要从事地下水循环的科研工作。E-mail: xiaolangzhang@foxmail.com

    通讯作者:

    焦赳赳(1963—),男,教授,博士生导师,主要从事水文地质教学和科研工作。E-mail: jjiao@hku.hk

  • 中图分类号: P641

Numerical modelling study on non-steady-state groundwater flow systems in response to changing rainfall

  • 摘要:

    区域地下水流系统的发育受地质、气候和地形多种因素的影响。以往的地下水流系统研究主要探讨了地质、地形和稳态气候条件下所形成的局部、中间和区域流动系统的组成特征, 对非稳态的地下水流系统认识不足。聚焦于研究地下水流系统对降雨变化的动态响应规律, 使用HydroGeoSphere构建了剖面二维地下水地表水耦合数值模型, 模拟在降雨的周期性和随机性叠加动态驱动下非稳态渗流场形成的地下水流系统。模拟结果表明, 各层级流动系统的空间范围都会随着降水波动而发生变化。局部地下水流系统在雨季并非都处于扩张状态, 在旱季也并非都处于收缩状态。各个局部流动系统的同时刻穿透深度之间可能具有无关、正相关或负相关关系, 这取决于各个局部流动系统响应降雨变化的滞后性。中间流动系统在非稳态条件下非常活跃, 其排泄出口、补给入口和循环路径随时间变化, 并强烈影响局部流动系统。通过5种不同含水层参数和降雨情景的模拟对比, 发现地下水流系统的滞后性和穿透深度的相关性对含水层各向异性特征较为敏感。下一步, 需要更加深入地研究地下水流系统在季节尺度、多年乃至跨世纪时间尺度气候波动过程中的非稳态响应规律。

     

  • 图 1  地下水流系统示意图[12-13]

    a.流域范围和水系平面图;b.剖面地下水流系统分布;c.地表分水岭和局部地下水流系统分水点

    Figure 1.  Schematic diagram of groundwater flow systems

    图 2  香港地区1974-2014年的逐月降雨量柱状图

    Figure 2.  Monthly rainfall rate from 1974 to 2014 in Hong Kong

    图 3  同向局部地下水流系统相对穿透深度(D/Z0)的变化曲线

    Figure 3.  Penetration depths of the codirectional local flow systems

    图 4  逆向局部地下水流动系统相对穿透深度(D/Z0)的变化曲线

    Figure 4.  Penetration depths of the counterdirectional local flow systems

    图 5  同向局部地下水流系统相同时刻穿透深度之间的关系

    Figure 5.  Relations between penetration depths of the codirectional local flow systems

    图 6  5种模拟情景(情景1至情景5)地下水流系统平均状态与Darcy流速的绝对值logV分布图[12-13]

    Figure 6.  Average flow patterns and darcy velocity magnitude logV(|V|, m/d) contours (in color bands) of Case1-Case 5

    图 7  情景1至情景5的局部流动系统同时刻穿透深度之间的相关系数热图

    Figure 7.  Heatmap of relations between the penetration depths of local flow systems in Case1-Case5

    表  1  局部抛物线型地形的控制参数

    Table  1.   Values of a, b and c used to control the local topographic undulation

    (xi, xi+1)/m a/10-5 b/m c/m
    (0, 712.75) a1=2.35 b1=-714.29 c1=12
    (712.75, 1 337.75) a2=3.07 b2=712.75 c2=12
    (1 337.75, 1 792.75) a3=4.84 b3=1 792.30 c3=10
    (1 792.75, 2 792.75) a4=1.00 b4=1 792.75 c4=10
    (2 792.75, 3 177.5) a5=9.46 b5=3 177.37 c5=14
    (3 177.5, 3 976.7) a6=2.19 b6=3 176.70 c6=14
    (3 976.7, 4 421) a7=4.56 b7=4 421.14 c7=9
    (4 421, 5 254.66) a8=1.30 b8=4 421.33 c8=9
    (5 254.66, 5 671) a9=7.49 b9=5 671.33 c9=13
    (5 671, 6 227.11) a10=4.21 b10=5 671.56 c10=13
    (6 227.11, 6 727.11) a11=4.40 b11=6 727.11 c11=11
    下载: 导出CSV

    表  2  局部流动系统穿透深度变化滞后降雨波动的月数

    Table  2.   Time lag (month) of the change in the penetration depth of local flow systems to rainfall fluctuations

    流动系统 模拟情景
    情景1 情景2 情景3 情景4 情景5
    WL1 5 3 4 4 4
    L2 4 2 4 9 3
    L3 4 3 4 4 4
    L4 4 0 4 9 4
    L5 4 9 3 4 4
    L6 4 0 0 9 2
    L7 4 3 11 0 0
    L8 4 9 9 9 4
    L9 1 2 10 4 0
    L10 1 0 0 9 0
    L11 1 9 0 0
    下载: 导出CSV
  • [1] Tóth J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176
    [2] 梁杏, 张人权, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.

    Liang X, Zhang R Q, Jin M G. Groundwater flow systems: Theory, application and investigation [M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [3] Domenico P A, Palciauskas V V. Theoretical analysis of forced convective heat transfer in regional groundwater flow[J]. Bulletin of the Geological Society of America, 1973, 84(12): 3803-3814. doi: 10.1130/0016-7606(1973)84<3803:TAOFCH>2.0.CO;2
    [4] Wang H, Jiang X W, Wan L, et al. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin[J]. Journal of Hydrology, 2015, 527: 433-441. doi: 10.1016/j.jhydrol.2015.04.063
    [5] Zhang X L, Jiao J J, Li H L, et al. Effects of downward intrusion of saline water on nested groundwater flow systems[J]. Water Resources Research, 2020, 56(10): W28377.
    [6] 张人权, 梁杏, 靳孟贵, 等. 多级次地下水流系统的最小能耗率原理初探[J]. 地质科技通报, 2022, 41(1): 11-18. doi: 10.19509/j.cnki.dzkq.2022.0002

    Zhang R Q, Liang X, Jin M G, et al. Preliminary discussion on the principle of minimum energy consumption rate controlling hierarchical groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 11-18(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0002
    [7] 万力, 王旭升, 蒋小伟. 地下水循环结构的动力学研究进展[J]. 地质科技通报, 2022, 41(1): 19-29. doi: 10.19509/j.cnki.dzkq.2022.0003

    Wan L, Wang X S, Jiang X W. Advances in dynamics of groundwater circulation patterns[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 19-29(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0003
    [8] 蒋小伟, 万力, 王旭升, 等. 区域地下水流理论的发展历程与教材演变[J]. 地质科技通报, 2022, 41(1): 43-49. doi: 10.19509/j.cnki.dzkq.2022.0004

    Jiang X W, Wan L, Wang X S, et al. Evolution of the theory of regional groundwater flow and updates in textbooks[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 43-49(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0004
    [9] Vandenberg A. Regional groundwater motion in response to an oscillating water table[J]. Journal of Hydrology, 1980, 47(3): 333-348.
    [10] Kollet S J, Maxwell R M. Demonstrating fractal scaling of baseflow residence time distributions using a fully-coupled groundwater and land surface model[J]. Geophysical Research Letters, 2008, 35(7): L07402.
    [11] Haitjema H M, Mitchell-Bruker S. Are water tables a subdued replica of the topography?[J]. Ground Water, 2005, 43(6): 781-786.
    [12] Zhang X L, Jiao J J, Guo W. How does topography control topography-driven groundwater flow?[J]. Geophysical Research Letters, 2022, 49(20): e2022GL101005.
    [13] Zhang X L, Li H L, Jiao J J, et al. Fractal behaviors of hydraulic head and surface runoff of the nested groundwater flow systems in response to rainfall fluctuations[J]. Geophysical Research Letters, 2022, 49(2): e2021GL093784.
    [14] Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812.
    [15] Tóth J. Gravitational systems of groundwater flow: Theory, evaluation and utilization[M]. Cambridge: Cambridge University Press, 2009.
    [16] Liang X, Quan D J, Jin M G, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Processes, 2013, 27(24): 3475-3483.
    [17] 张蔓菲, 孙蓉琳, 梁杏. 通量上边界渗透系数随埋深增加指数衰减的地下水流系统[J]. 地质科技情报, 2015, 34(4): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504028.htm

    Zhang M F, Sun R L, Liang X. Effect of Decay exponential in hydraulic conductivity with depth on groundwater flow system based on flux upper boundary[J]. Geological Science and Technology Information, 2015, 34(4): 189-193(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504028.htm
    [18] Dai X, Xie Y Q, Simmons C T, et al. Understanding topography-driven groundwater flow using fully-coupled surface-water and groundwater modeling[J]. Journal of Hydrology, 2021, 594: 125950.
    [19] Zhao K Y, Jiang X W, Wang X S, et al. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table[J]. Journal of Hydrology, 2018, 556: 813-823.
    [20] Brunner P, Simmons C T. HydroGeoSphere: A fully integrated, physically based hydrological model[J]. Groundwater, 2012, 50(2): 170-176.
    [21] Goderniaux P, Davy P, Bresciani E, et al. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments[J]. Water Resources Research, 2013, 49(4): 2274-2286.
    [22] Jiang X W, Wang X S, Wan L, et al. An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity[J]. Water Resources Research, 2011, 47(1): W01512.
    [23] Robinson N I, Love A J. Hidden channels of groundwater flow in Tóthian drainage basins[J]. Advances in Water Resources, 2013, 62: 71-78.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  619
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 录用日期:  2023-05-11
  • 修回日期:  2023-04-07

目录

    /

    返回文章
    返回