留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘肃舟曲江顶崖古滑坡形成演化机理与堆积体稳定性评价

刘涛 张明 王立朝 杨龙 殷保国

刘涛, 张明, 王立朝, 杨龙, 殷保国. 甘肃舟曲江顶崖古滑坡形成演化机理与堆积体稳定性评价[J]. 地质科技通报, 2024, 43(3): 266-278. doi: 10.19509/j.cnki.dzkq.tb20230076
引用本文: 刘涛, 张明, 王立朝, 杨龙, 殷保国. 甘肃舟曲江顶崖古滑坡形成演化机理与堆积体稳定性评价[J]. 地质科技通报, 2024, 43(3): 266-278. doi: 10.19509/j.cnki.dzkq.tb20230076
LIU Tao, ZHANG Ming, WANG Lichao, YANG Long, YIN Baoguo. Formation and evolution mechanism of the ancient landslide and stability evaluation of the accumulation body in Jiangdingya, Zhouqu County, Guansu Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 266-278. doi: 10.19509/j.cnki.dzkq.tb20230076
Citation: LIU Tao, ZHANG Ming, WANG Lichao, YANG Long, YIN Baoguo. Formation and evolution mechanism of the ancient landslide and stability evaluation of the accumulation body in Jiangdingya, Zhouqu County, Guansu Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 266-278. doi: 10.19509/j.cnki.dzkq.tb20230076

甘肃舟曲江顶崖古滑坡形成演化机理与堆积体稳定性评价

doi: 10.19509/j.cnki.dzkq.tb20230076
基金项目: 

甘肃省舟曲重大地质灾害风险评价及综合防控技术研究项目 2021-001

详细信息
    作者简介:

    刘涛, E-mail: 2200835079@qq.com

    通讯作者:

    张明, E-mail: zhangming8157@126.com

  • 中图分类号: P642.22

Formation and evolution mechanism of the ancient landslide and stability evaluation of the accumulation body in Jiangdingya, Zhouqu County, Guansu Province

More Information
  • 摘要:

    古滑坡堆积体复活是我国青藏高原及周边地区的主要地质灾害类型之一, 也是我国西部正在建设的重大交通和水利工程面临的主要安全威胁之一。因此, 对古滑坡的形成演化机理进行研究并对其堆积体进行稳定性评价, 显得极为重要, 可以为古滑坡堆积体复活的早期识别与防治设计提供理论支持。甘肃省舟曲县江顶崖古滑坡堆积体近十年来数次局部复活形成滑坡堵塞白龙江, 对当地人民的生命财产安全造成严重威胁。通过现场调查和无人机倾斜摄影等手段, 查明了江顶崖古滑坡堆积体的形态和结构特征, 在此基础上分析了滑坡的演化机理和动力学过程, 再结合InSAR变形数据对堆积体的稳定性进行了定性评价。结果显示, 江顶崖古滑坡是典型的大型地震滑坡, 其滑体沿3个方向坐落式下滑, 形成了如今多级台阶状的堆积体形态; 在地震荷载作用下古滑坡的动力学过程可分为中上部震动-拉裂、前缘锁固段剪断-滑坡启动、后缘拉裂-滑体加速、前缘受阻-滑体减速、稳定阶段。由于古滑坡在地震荷载作用下整体下滑, 导致上部堆积体内存在大量结构完整的岩体, 因此较为稳定; 而中下部堆积体大都为断层破碎带和破碎岩体组成的软弱结构, 稳定性较差, 未来极有可能复活。

     

  • 图 1  研究区构造背景图[22]

    F1.东昆企断裂带; F2.西秦岭断裂带; F3.塔藏断裂带; F4.迭部-白龙江断裂带; F5.光盖山-迭山断裂带; F6.临潭-宕昌断裂带; F7.九寨沟-文县断裂带; F8.平武-青川断裂带; F9.北川-林庵寺断裂带; F10.江油断裂带; F11.鹏江断裂带; F12.虎牙断裂带; F13.康县-略阳断裂带; F14.两当-江洛断裂带; F15.礼县-罗家堡断裂带

    Figure 1.  Background map of geological formations in the study area

    图 2  甘肃舟曲江顶崖古滑坡发育特征及分区图

    Figure 2.  Development characteristics and zone of the Jiangdingya ancient landslide in Zhouqu County, Gansu Province

    图 3  甘肃舟曲江顶崖古滑坡剖面

    Figure 3.  Profiles of the Jiangdingya ancient landslide in Zhouqu County, Gansu Province

    图 4  甘肃舟曲江顶崖古滑坡发育特征

    a~d.Ⅰ区;e~h.Ⅱ区;照片拍摄位置方向见图 2,拍摄方向以正北方向为0°顺时针表示

    Figure 4.  Development characteristics of the Jiangdingya ancient landslide in Zhouqu County, Gansu Province

    图 5  甘肃舟曲江顶崖古滑坡及周边滑坡分布情况

    Figure 5.  Distribution of the Jiangdingya ancient landslide and surrounding landslides in Zhouqu County, Gansu Province

    图 6  甘肃舟曲江顶崖古滑坡数值模型

    Figure 6.  Numerical model of the Jiangdingya ancient landslide in Zhouqu County, Gansu Province

    图 7  原始地震波波形

    Figure 7.  Waveform of the original seismic wave

    图 8  甘肃舟曲江顶崖古滑坡在不同时间段的运动状态

    Figure 8.  Movement of the Jiangdingya ancient landslide in Zhouqu County, Gansu Province during different time periods

    图 9  甘肃舟曲江顶崖古滑坡滑体前、中、后部速度时程监测曲线

    Figure 9.  Velocity time history monitoring curves at the front, middle, and rear of the Jiagdingya ancient landslide in Zhouqu County, Gansu Province

    图 10  2018年复活滑体应急治理工程平面图

    Figure 10.  Project plan of the 2018 resurrection slide body emergency treatment

    图 11  2018年复活滑体应急治理工程C-C′剖面图

    Figure 11.  Profile of the 2018 resurrection slide body emergency treatment

    图 12  古滑坡堆积体结构类型

    Figure 12.  Structural type of ancient landslide accumulations

    图 13  古滑坡堆积体变形特征图

    Figure 13.  Deformation characteristics of ancient landslide accumulations

    图 14  剖面D-D′、E-E′、F-F′特征点累计位移时程曲线

    Figure 14.  Cumulative displacement time history curves of the characteristic points of sections D-D′, E-E′ and F-F

    表  1  岩体力学参数

    Table  1.   Mechanical parameters of the rock mass

    岩体类型 弹性模量/GPa 泊松比 天然密度/(kg·m-2) 内摩擦角/(°) 内聚力/MPa 抗拉强度/MPa
    灰岩 50 0.16 2 700 65 2.0 1.5
    炭质板岩 25 0.18 2 600 36 0.4 3.0
    断层破碎带 15 0.20 2 500 30 0.1 2.2
    下载: 导出CSV

    表  2  结构面力学参数

    Table  2.   Mechanical parameters of the structural surfaces

    岩体类型 法向刚度/(GPa·m-1) 切向刚度/(GPa·m-1) 内摩擦角/(°) 内聚力/MPa 抗拉强度/MPa
    灰岩 2 0.4 30 0.3 0.1
    炭质板岩 1 0.3 25 0.24 0.12
    断层破碎带 0.8 0.15 22 0.16 0.08
    下载: 导出CSV
  • [1] 彭建兵, 马润勇, 卢全中, 等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 2004, 19(3): 457-466. doi: 10.3321/j.issn:1001-8166.2004.03.018

    PENG J B, MA R Y, LU Q Z, et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences, 2004, 19(3): 457-466. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2004.03.018
    [2] 吴凯峰, 余凯, 姚鑫, 等. 库水升降对漩口滑坡稳定性的影响规律[J]. 地质科技情报, 2017, 36(6): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706030.htm

    WU K F, YU K, YAO X, et al. Impact rule of reservoir water level fluctuation on the stability of Xuankou landslide[J]. Geological Science and Technology Information, 2017, 36(6): 256-260. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706030.htm
    [3] 杨为民, 黄晓, 张永双, 等. 甘肃南部坪定-化马断裂带滑坡变形特征及其防治[J]. 地质通报, 2013, 32(12): 1925-1935. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312006.htm

    YANG W M, HUANG X, ZHANG Y S, et al. The deformation characteristics of the landslide along Pingding-Huama active fault zone and its prevention and control[J]. Geological Bulletin of China, 2013, 32(12): 1925-1935. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312006.htm
    [4] 王占巍, 赵发睿, 谢文苹, 等. 青海省高家湾滑坡的形成条件分析及稳定性评价[J]. 水土保持通报, 2020, 40(3): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202003012.htm

    WANG Z W, ZHAO F R, XIE W P, et al. Formation condition analysis and stability evaluation of Gaojiawan landslide in Qinghai Province[J]. Bulletin of Soil and Water Conservation, 2020, 40(3): 81-87. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202003012.htm
    [5] GUO C B, ZHANG Y S, YUAN H, et al. Study of an ancient landslide reactivation mechanism based on centrifuge model testing: An example of the Jiangdingya ancient landslide reactivation in 2018, Gansu Province, China[J]. Landslides, 2023, 20(1): 127-141. doi: 10.1007/s10346-022-01978-5
    [6] JIANG N, LI H B, HU Y X, et al. Dynamic evolution mechanism and subsequent reactivated ancient landslide analyses of the"6.17"Danba sequential disasters[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 149. doi: 10.1007/s10064-022-02614-1
    [7] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报, 2022, 41(6): 1-13. 10.19509/j.cnki.dzkq.2022.0203

    TANG H M. Advance and prospects of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1-13. (in Chinese with English abstract) 10.19509/j.cnki.dzkq.2022.0203
    [8] 李晓, 张年学, 李守定, 等. 奉节白衣庵滑坡演化的工程地质与历史地质分析[J]. 岩石力学与工程学报, 2006, 25(12): 2416-2425. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612008.htm

    LI X, ZHANG N X, LI S D, et al. Engineering geological and historic geological analysis of Baiyi'an landslide evolution in Fengjie County[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2416-2425. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612008.htm
    [9] 许强, 陈伟, 张倬元. 对我国西南地区河谷深厚覆盖层成因机理的新认识[J]. 地球科学进展, 2008, 23(5): 448-456. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200805003.htm

    XU Q, CHEN W, ZHANG Z Y. New views on forming mechanism of deep overburden on river bed in Southwest of China[J]. Advances in Earth Science, 2008, 23(5): 448-456. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200805003.htm
    [10] 郭晓光. 大渡河流域石棉-泸定段大型古滑坡与河谷侵蚀的孕生关系[D]. 成都: 成都理工大学, 2014.

    GUO X G. The relationship between pregnancy of large ancient landslidesand erosion of river at Shimian-Luding in the Dadu River Valley[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract)
    [11] 刘筱怡, 张永双, 郭长宝, 等. 川西鲜水河呷拉宗古滑坡发育特征与形成演化过程[J]. 地质学报, 2019, 93(7): 1767-1777. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201907015.htm

    LIU X Y, ZHANG Y S, GUO C B. et al. Development characteristics and evolution process of the Garazong ancient rockslide along the Xianshuihe River in western Sichuan[J]. Acta Geologica Sinica, 2019, 93(7): 1767-1777. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201907015.htm
    [12] 张永双, 吴瑞安, 郭长宝, 等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 2018, 33(7): 728-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807006.htm

    ZHANG Y S, WU R A, GUO C B, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728-740. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807006.htm
    [13] 张永双, 刘筱怡, 吴瑞安, 等. 青藏高原东缘深切河谷区古滑坡: 判识、特征、时代与演化[J]. 地学前缘, 2021, 28(2): 94-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102009.htm

    ZHANG Y S, LIU X Y, WU R A. et al. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China[J]. Earth Science Frontiers, 2021, 28(2): 94-105. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102009.htm
    [14] 赵勇, 许模, 郭健, 等. 大渡河双家坪古平推式滑坡堆积特征及形成机制[J]. 山地学报, 2015, 33(1): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201501008.htm

    ZHAO Y, XU M, GUO J, et al. Characteristics of accumulation and mechanism of Shuangjiaping ancient translational landslide in the Dadu River, China[J]. Mountain Research, 2015, 33(1): 58-64. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201501008.htm
    [15] 詹美强, 葛永刚, 贾利蓉, 等. 藏东德弄弄巴古滑坡堆积体物理力学特征及稳定性分析[J]. 现代地质, 2019, 33(5): 1118-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905020.htm

    ZHAN M Q, GE Y G, JIA L R, et al. Study on physical and mechanical characteristics and stability analysis of ancient landslide deposit in East Tibet[J]. Geoscience, 2019, 33(5): 1118-1127. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905020.htm
    [16] 吴瑞安, 张永双, 郭长宝, 等. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报, 2018, 40(9): 1659-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809014.htm

    WU R A, ZHANG Y S, GUO C B, et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659-1667. (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809014.htm
    [17] 何坤, 胡卸文, 马国涛, 等. 四川省盐源玻璃村特大型玄武岩古滑坡复活机制[J]. 岩土力学, 2020, 41(10): 3443-3455. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010031.htm

    HE K, HU X W, MA G T, et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan, Sichuan[J]. Rock and Soil Mechanics, 2020, 41(10): 3443-3455. (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010031.htm
    [18] 唐军峰, 唐雪梅, 肖鹏, 等. 库水位升降与降雨作用下大型滑坡体渗流稳定性分析[J]. 地质科技通报, 2021, 40(4): 153-161. doi: 10.19509/j.cnki.dzkq.2021.0409

    TANG J F, TANG X M, XIAO P, et al. Analysis of seepage stability of large-scale landslide under water-level fluctuation and rainfall[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 153-161. (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0409
    [19] LIN L X, CHEN G, SHI W, et al. Spatiotemporal evolution pattern and driving mechanisms of landslides in the Wenchuan earthquake-affected region: A case study in the Bailong River basin, China[J]. Remote Sensing, 2022, 14(10): 2339. doi: 10.3390/rs14102339
    [20] GUO C B, ZHANG Y S, LI X, et al. Reactivation of giant Jiangdingya ancient landslide in Zhouqu County, Gansu Province, China[J]. Landslides, 2020, 17(1): 179-190. doi: 10.1007/s10346-019-01266-9
    [21] MA S Y, QIU H J, HU S, et al. Characteristics and geomorphology change detection analysis of the Jiangdingya landslide on July 12, 2018, China[J]. Landslides, 2021, 18(1): 383-396. doi: 10.1007/s10346-020-01530-3
    [22] 常直杨. 青藏高原东缘白龙江流域地貌定量化参数体系研究[D]. 南京: 南京师范大学, 2014.

    CANG Z Y. Research on quantitative geomorphologic indices of Bailongjiang drainage basin in the eastern Tibet Plateau based on digital elevation models[D]. Nanjing: Nanjing Normal University, 2014. (in Chinese with English abstract)
    [23] 黄润秋, 许强. 中国典型灾难性滑坡[M]. 北京: 科学出版社, 2009.

    HUANG R Q, XU Q. Catastrophic landslides in China[J]. Beijing: Science Press, 2009. (in Chinese)
    [24] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm

    HUANG R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
    [25] 周勇, 王仲凯, 杨校辉. 舟曲江顶崖滑坡抗滑桩桩身响应监测分析[J]. 工程地质学报, 2022, 30(1): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201017.htm

    ZHOU Y, WANG Z K, YANG X H. Monitoring analysis of anti-slide piles for Jiangdingya landslide in Zhouqu[J]. Journal of Engineering Geology, 2022, 30(1): 197-204. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201017.htm
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  439
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 录用日期:  2023-03-31
  • 修回日期:  2023-03-27

目录

    /

    返回文章
    返回