Responses of soil moisture content to rainfall events and its influencing factors at Yujia Mountain
-
摘要:
研究武汉市喻家山试验区次降雨事件下土壤含水率的响应特征和影响因素, 为后续包气带和饱水带地下水储量变化研究提供科学依据。基于野外降雨、地下水位和土壤含水率的连续监测数据, 分析4个典型剖面土壤含水率的动态变化及其对6次降雨事件的响应特征; 以S4剖面为例采用灰色关联度法分析影响土壤含水率响应幅度的主导因子。结果表明: 相对于喻家山山体较高位置, 南坡和北坡坡脚的地形高程低, 地下水位埋深小, 土壤颗粒细, 分选好, 土壤剖面的含水率平均值较大, 变异系数较小; 4个剖面的土壤含水率大小和初始响应时间随埋深增加并不是系统地增加, 反映研究区土壤剖面非均质性较强; 平均降雨强度和最大降雨强度与含水率响应幅度间的关联度最大, 是控制试验区含水率响应的主导因子。位于喻家山南坡坡脚实验大楼内的2个土壤剖面受人类建筑活动、周围绿化和浇水影响较大, 后期应结合长期监测资料综合分析土壤含水率的响应特征和主控因素。
Abstract:Objective The response characteristics and influencing factors of soil moisture content under individual rainfall events at the test site of Yujia Mountain in Wuhan, China, were studied to provide a scientific basis for subsequent studies on groundwater storage changes in the unsaturated and saturated zones.
Methods Based on the continuous field monitoring data of rainfall, groundwater level and soil moisture content, the dynamic changes in soil moisture content in four typical profiles and their response characteristics to six rainfall events were analysed. Taking the S4 profile as an example, the dominant factors of the response amplitude of soil moisture content were identified using the grey correlation method.
Results Compared with the higher position of Yujia Mountain, the foot of the southern and northern slopes is lower, with a shallow water table, fine soil particles, and good sorting. As a result, the mean value of the soil moisture content was larger, and the coefficient of variation was smaller. The soil moisture content and initial response time of the four profiles did not increase systematically with increasing burial depth, reflecting the strong heterogeneity of the soil profiles in the study area. The correlation analysis between the response amplitude of soil moisture content and the four influencing factors showed that the average and maximum rainfall intensities were the dominant factors.
Conclusion The two soil profiles located in the experimental building at the foot of the southern slope are strongly affected by human construction activities, surrounding greening and watering. The response characteristics and main influencing factors of soil moisture content should be comprehensively analysed based on long-term monitoring data in the future.
-
Key words:
- rainfall events /
- soil moisture content /
- grey correlation method /
- rainfall intensity /
- dominant factor
-
表 1 所选6次降雨事件的降雨特征
Table 1. Characteristics of the six selected rainfall events
降雨事件 开始时间 总降雨量/mm 降雨持续时间/h 平均降雨强度/(mm·h-1) 最大降雨强度/(mm·h-1) 等级(24 h降雨量)/mm 1 2022/01/04 26.4 12 2.2 6.2 大雨(25~50) 2 2022/03/16 68.8 15 4.6 19.4 暴雨(>50) 3 2022/03/24 102.0 23 4.4 11.2 暴雨(>50) 4 2022/03/30 16.8 10 1.7 4.8 中雨(10~25) 5 2022/04/25 45.8 8 5.7 17.6 大雨(25~50) 6 2022/04/28 16.6 6 2.8 5.8 中雨(10~25) 表 2 不同埋深土壤含水率平均值和变异系数
Table 2. Mean values and coefficient of variation of soil moisture content at different depths
深度/cm 平均值/% 变异系数CV/% S1剖面 S2剖面 S3剖面 S4剖面 S1剖面 S2剖面 S3剖面 S4剖面 30 32.3 28.3 14.6 29.4 12.3 2.8 13.1 7.6 50 28.6 37.8 18.2 33.2 5.1 6.9 23.3 12.2 70 32.6 38.8 23.2 32.8 18.7 3.5 17.3 9.6 90 32.3 32.0 16.5 39.8 2.9 4.1 22.4 9.7 110 40.1 30.9 22.7 28.7 8.7 12.6 15.4 6.9 130 40.1 30.0 26.0 36.1 11.5 6.4 24.0 14.8 表 3 S4剖面灰色关联度计算结果
Table 3. Calculated grey correlation degree for the S4 profile
埋深/cm 降雨量 X1 平均降雨强度X2 最大降雨强度X3 土壤前期湿润情况X4 30 0.600 0.865 0.751 0.745 50 0.622 0.899 0.827 0.695 70 0.632 0.767 0.752 0.433 90 0.623 0.736 0.765 0.515 110 0.591 0.683 0.638 0.567 130 0.769 0.743 0.776 0.708 -
[1] Scaife C I, Singh N K, Emanuel R E, et al. Non-linear quick flow response as indicators of runoff generation mechanisms[J]. Hydrological Processes, 2020, 34(13): 2949-2964. doi: 10.1002/hyp.13780 [2] Zhang J, Wang S, Fu Z, et al. Soil thickness controls the rainfall-runoff relationship at the karst hillslope critical zone in Southwest China[J]. Journal of Hydrology, 2022, 609(16): 127779. [3] Ramos-Scharrón C E, LaFevor M C. Effects of forest roads on runoff initiation in low-order ephemeral streams[J]. Water Resources Research, 2018, 54(11): 8613-8631. doi: 10.1029/2018WR023442 [4] Mirus B B, Loague K. How runoff begins (and ends): Characterizing hydrologic response at the catchment scale[J]. Water Resources Research, 2013, 49(5): 2987-3006. doi: 10.1002/wrcr.20218 [5] Rice J S, Emanuel R E. Ecohydrology of interannual changes in watershed storage[J]. Water Resources Research, 2019, 55(10): 8238-8251. doi: 10.1029/2019WR025164 [6] Wei L, Qiu Z, Zhou G, et al. Soil water hydraulic redistribution in a subtropical monsoon evergreen forest[J]. Science of the Total Environment, 2022, 835(1): 155437. [7] 周宇渤. 三江平原地下水循环环境演化研究[D]. 长春: 吉林大学, 2011.Zhou Y B. Reserch on evolution of groundwater circulation environment in Sanjiang Plain[D]. Changchun: Jilin University, 2011(in Chinese with English abstract). [8] 孙巍锋, 常洲, 兰恒星, 等. 高寒阴湿区边坡浅层土体温湿响应规律研究[J]. 水文地质工程地质, 2022, 49(5): 204-213. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202205023.htmSun W F, Chang Z, Lan H X, et al. The response regularity of temperature and humidity of surface soil on slopes in high-cold and humid areas[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 204-213(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202205023.htm [9] 魏占玺, 谢东武, 毋远召, 等. 基于动态残余强度的不同含水率条件下滑坡稳定性研究[J]. 水文地质工程地质, 2022, 49(2): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202202015.htmWei Z X, Xie D W, Wu Y Z, et al. Research on landslide stability under different water content conditions based on the dynamic residual strength[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 126-136(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202202015.htm [10] 李泽坤, 马鹏辉, 彭建兵, 等. 黑方台地区马兰黄土渗透特性及结构损伤试验研究[J]. 地质科技通报, 2022, 41(6): 200-210. doi: 10.19509/j.cnki.dzkq.2022.0251Li Z K, Ma P H, Peng J B, et al. Experimental study on the permeability characteristics and structure damage of Malan loess in Heifangtai area[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 200-210 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0251 [11] 郭文颢, 程伍群, 赵静思. 城市小区绿地入渗试验研究[J]. 水电能源科学, 2021, 39(2): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202102013.htmGuo W H, Cheng W Q, Zhao J S. Experimental study on infiltration of green space at urban district[J]. Water Resources and Power, 2021, 39(2): 51-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202102013.htm [12] Demand D, Blume T, Weiler M. Spatio-temporal relevance and controls of preferential flow at the landscape scale[J]. Hydrology and Earth System Sciences, 2019, 23(11): 4869-4889. doi: 10.5194/hess-23-4869-2019 [13] Graham C B, Lin H S. Controls and frequency of preferential flow occurrence: A 175-event analysis[J]. Vadose Zone Journal, 2011, 10(3): 816-831. doi: 10.2136/vzj2010.0119 [14] Detty J M, McGuire K J. Topographic controls on shallow groundwater dynamics: Implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment[J]. Hydrological Processes, 2010, 24(16): 2222-2236. doi: 10.1002/hyp.7656 [15] Reyes W M, Epstein H E, Li X, et al. Complex terrain influences ecosystem carbon responses to temperature and precipitation[J]. Global Biogeochemical Cycles, 2017, 31(8): 1306-1317. doi: 10.1002/2017GB005658 [16] Sidle R C, Noguchi S, Tsuboyama Y, et al. A conceptual model of preferential flow systems in forested hillslopes: Evidence of self-organization[J]. Hydrological Processes, 2001, 15(10): 1675-1692. doi: 10.1002/hyp.233 [17] 李海防, 史梅容, 王金叶, 等. 广西猫儿山毛竹林不同层次土壤含水量的降雨响应[J]. 水土保持研究, 2016, 23(5): 120-123, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201605020.htmLi H F, Shi M R, Wang J Y, et al. Response of soil water content in different layers to rainfall under Phyllostachys pubescens forest in Mao'ershan, Guangxi[J]. Research of Soil and Water Conservation, 2016, 23(5): 120-123, 128(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201605020.htm [18] 袁淑卿. 武汉市喻家山水文地质特征综合研究[D]. 武汉: 中国地质大学(武汉), 2022.Yuan S Q. Comprehensive study on hydrogeological characteristics of Yujia Mountain in Wuhan[D]. Wuhan: China University of Geosciences(Wuhan), 2022(in Chinese with English abstract). [19] Singh N K, Emanuel R E, Nippgen F, et al. The relative influence of storm and landscape characteristics on shallow groundwater responses in forested headwater catchments[J]. Water Resources Research, 2018, 54(12): 9883-9900. [20] 汪新光, 张冲, 张辉, 等. 基于微观孔隙结构的低渗透砂岩储层分类评价[J]. 地质科技通报, 2021, 40(4): 93-103. doi: 10.19509/j.cnki.dzkq.2021.0429Wang X G, Zhang C, Zhang H, et al. Classification and evaluation of low-permeability sand reservoirs based on micro-pore structure[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 93-103 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0429 [21] Wiekenkamp I, Huisman J A, Bogena H R, et al. Spatial and temporal occurrence of preferential flow in a forested headwater catchment[J]. Journal of Hydrology, 2016, 534: 139-149. [22] 石生新. 高强度人工降雨条件下影响入渗速率因素的试验研究[J]. 水土保持通报, 1992, 12(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB199202006.htmShi S X. A testing study of factors affecting infiltration rate under artificial rainfall with high intensity[J]. Bulletin of Soil and Water Conservation, 1992, 12(2): 49-54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STTB199202006.htm