留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨厚非均质含水层中超深孔涌水量预测

陈迪 闫海涛 乔翔宇 王全荣

陈迪, 闫海涛, 乔翔宇, 王全荣. 巨厚非均质含水层中超深孔涌水量预测[J]. 地质科技通报, 2024, 43(4): 302-310. doi: 10.19509/j.cnki.dzkq.tb20230122
引用本文: 陈迪, 闫海涛, 乔翔宇, 王全荣. 巨厚非均质含水层中超深孔涌水量预测[J]. 地质科技通报, 2024, 43(4): 302-310. doi: 10.19509/j.cnki.dzkq.tb20230122
CHEN Di, YAN Haitao, QIAO Xiangyu, WANG Quanrong. Prediction of ultradeep pore water inflow in giant thick heterogeneous aquifers[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 302-310. doi: 10.19509/j.cnki.dzkq.tb20230122
Citation: CHEN Di, YAN Haitao, QIAO Xiangyu, WANG Quanrong. Prediction of ultradeep pore water inflow in giant thick heterogeneous aquifers[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 302-310. doi: 10.19509/j.cnki.dzkq.tb20230122

巨厚非均质含水层中超深孔涌水量预测

doi: 10.19509/j.cnki.dzkq.tb20230122
基金项目: 

武汉中交工程勘察有限公司科研项目“新疆乌尉天山胜利隧道2号竖井抽水试验研究” 

详细信息
    作者简介:

    陈迪, E-mail: 1019760651@qq.com

    通讯作者:

    王全荣, E-mail: wangqr@cug.edu.cn

  • 中图分类号: P641.1

Prediction of ultradeep pore water inflow in giant thick heterogeneous aquifers

More Information
  • 摘要:

    解析解模型计算效率高, 被广泛应用于估计含水层涌水量。然而, 这类模型包含许多假设条件, 例如: 含水层是均质的、抽水量是常数、忽略井内水头损失等, 因此被称为均质模型。事实上, 这些假设条件往往得不到满足, 导致结果产生不可忽略的误差, 尤其是非均质巨厚含水层。同时, 均质模型无法估计破碎带的渗透系数与涌水量, 不利于解决隧道施工过程中的水患问题。依托新疆天山胜利隧道项目, 开展了2次抽水试验。基于综合测井数据和钻孔数据建立地质模型; 采用非均质数值模拟方法定量研究超深孔的地下水涌水量。采用第一次抽水试验的观测数据率定模型中的参数, 采用第二次抽水试验的观测数据验证模型与率定后参数的合理性。模型反演了破碎带、完整花岗岩和较完整花岗岩的渗透系数, 分别为0.000 93, 0.000 5, 0.000 3 m/d; 预测了总涌水量与破碎带的涌水量, 分别为14.80, 10.46 m3/h, 其中破碎带的涌水量占总涌水量的70.676%。野外的观测数据表明超深孔抽水试验过程中井筒内存在水头损失。非均质数值模拟模型比均质模型更能解释超深孔抽水试验数据, 均质模型计算的总涌水量结果为18.67 m3/h, 高估了涌水量。在隧道施工过程中, 非均质模型获取的水动力学参数和涌水量更加可靠。

     

  • 图 1  2号竖井钻孔柱状图

    Figure 1.  Borehole histogram of the No.2 vertical well

    图 2  研究区剖面数值模拟网格系统

    Figure 2.  Numerical model grid system of profile in the study area

    图 3  2次抽水试验观测结果

    Figure 3.  Observed drawdown from two pumping tests

    图 4  不同深度第一次降深观测值与模拟值拟合结果

    Figure 4.  First drawdown between the observed and simulated data at different depths

    图 5  第二次抽水试验观测值与模拟值最佳拟合结果

    Figure 5.  Best fitting between the observation from the second pumping test and the simulated data

    表  1  2号竖井0~700 m基岩完整性统计

    Table  1.   Bedrock integrity statistics for No.2 vertical well

    深度/m 厚度/m 完整度 岩性
    [68.80, 74.90) 6.10 较破碎 中风化花岗闪长岩
    [74.90, 96.00) 21.10 较破碎 中风化花岗岩
    [96.00, 116.50) 20.50 较破碎 中风化花岗闪长岩
    [116.50, 154.00) 37.50 较破碎 中风化花岗岩
    [154.00, 174.00) 20.00 破碎 中风化花岗岩
    [174.00, 199.00) 25.00 较完整 中风化花岗岩
    [199.00, 232.00) 33.00 破碎 中风化花岗岩
    [232.00, 238.00) 6.00 极破碎 中风化花岗闪长岩
    [238.00, 247.10) 9.10 较破碎 中风化花岗岩
    [247.10, 250.90) 3.80 较破碎 中风化花岗闪长岩
    [250.90, 282.90) 32.00 较破碎 中风化花岗岩
    [282.90, 291.60) 8.70 较破碎 微风化闪长岩
    [291.60, 328.10) 36.50 较完整 微风化花岗岩
    [328.10, 377.20) 49.10 较破碎 微风化花岗岩
    [377.20, 381.60) 4.40 较破碎 微风化闪长岩
    [381.60, 411.30) 29.70 较完整 微风化花岗岩
    [411.30, 441.30) 30.00 较破碎 微风化闪长岩
    [441.30, 452.30) 11.00 较完整 微风化闪长岩
    [452.30, 459.00) 6.70 较完整 微风化花岗岩
    [459.00, 469.00) 10.00 较完整 微风化闪长岩
    [469.00, 475.20) 6.20 较完整 微风化花岗岩
    [475.20, 491.70) 16.50 完整 微风化花岗闪长岩
    [491.70, 594.00) 102.30 较完整 微风化花岗岩
    [594.00, 642.40) 48.40 完整 微风化花岗岩
    [642.40, 649.00) 6.60 破碎 微风化花岗岩
    [649.00, 656.40) 7.40 完整 微风化花岗岩
    [656.40, 665.00) 8.6 较破碎 微风化闪长岩
    [665.00, 700.00] 35 较完整 微风化花岗岩
    下载: 导出CSV

    表  2  采用非均质模型和均质模型反演的巨厚含水层主要水文地质参数

    Table  2.   Estimated hydraulic parameters of the giant thick aquifer by the heterogeneous model and homogeneous model

    深度/m 分层情况 Kr, i/(m·d-1) Kz, i/(m·d-1) Ss, i Sy, i
    非均质模型 [68.80, 174.00) 破碎带 0.000 93 0.000 093 0.000 01 0.15
    [174.00, 199.00) 较完整花岗岩 0.000 50 0.000 050 0.000 01
    [199.00, 291.60) 破碎带 0.000 93 0.000 093 0.000 01
    [291.60, 328.10) 较完整花岗岩 0.000 50 0.000 050 0.000 01
    [328.10, 381.60) 破碎带 0.000 93 0.000 093 0.000 01
    [381.60, 411.30) 较完整花岗岩 0.000 50 0.000 050 0.000 01
    [411.30, 441.30) 破碎带 0.000 93 0.000 093 0.000 01
    [441.30, 475.20) 较完整花岗岩 0.000 50 0.000 050 0.000 01
    [475.20, 491.70) 完整花岗岩 0.000 30 0.000 030 0.000 01
    [491.70, 594.00) 较完整花岗岩 0.000 50 0.000 050 0.000 01
    [594.00, 642.40) 完整花岗岩 0.000 30 0.000 030 0.000 01
    [642.40, 649.00) 破碎带 0.000 93 0.000 093 0.000 01
    [649.00, 656.40) 完整花岗岩 0.000 30 0.000 030 0.000 01
    [656.40, 665.00) 破碎带 0.000 93 0.000 093 0.000 01
    [665.00, 700.00] 较完整花岗岩 0.000 50 0.000 050 0.000 01
    均质模型 [68.80, 700.00] 均质含水层 0.000 59 0.000 059 0.000 01 0.15
    注:Ss, i, Kr, i, Kz, i分别为第i层含水层的储水系数、水平向渗透系数和垂向渗透系数;Sy, i为弹性给水度
    下载: 导出CSV

    表  3  涌水量预测结果

    Table  3.   Estimated water inflow

    深度/m 分层情况 涌水量/(m3·h-1) 总涌水量/(m3·h-1)
    [68.8, 174.0) 破碎带 3.731 14.80
    [174.0, 199.0) 较完整花岗岩 0.275
    [199.0, 291.6) 破碎带 3.242
    [291.6, 328.1) 较完整花岗岩 0.402
    [328.1, 381.6) 破碎带 1.868
    [381.6, 411.3) 较完整花岗岩 0.327
    [411.3, 441.3) 破碎带 1.080
    [441.3, 475.2) 较完整花岗岩 0.373
    [475.2, 491.7) 完整花岗岩 0.330
    [491.7, 594.0) 较完整花岗岩 1.125
    [594.0, 642.4) 完整花岗岩 0.968
    [642.4, 649.0) 破碎带 0.238
    [649.0, 656.4) 完整花岗岩 0.155
    [656.4, 665.0) 破碎带 0.301
    [665.0, 700.0] 较完整花岗岩 0.385
    下载: 导出CSV
  • [1] LI Y, ZHOU Z, ZHUANG C, et al. Non-Darcian effect on a variable-rate pumping test in a confined aquifer[J]. Hydrogeology Journal, 2020, 28(8): 2853-2863. doi: 10.1007/s10040-020-02223-w
    [2] LIN Y C, YEH H D. An analytical model with a generalized nonlinear water transfer term for the flow in dual porosity media induced by constant-rate pumping in a leaky fractured aquifer[J]. Water Resources Research, 2021, 57(8): e2020WR029186. doi: 10.1029/2020WR029186
    [3] XIAO L, YE M, XU Y, et al. A simplified solution using Izbash's equation for non-Darcian flow in a constant rate pumping test[J]. Groundwater, 2019, 57(6): 962-968. doi: 10.1111/gwat.12886
    [4] YANG S Y, YEH H D, CHIU P Y. A closed form solution for constant flux pumping in a well under partial penetration condition[J]. Water Resources Research, 2006, 42(5): 277-286.
    [5] ZHENG G, HA D, LOAICIGA H, et al. Estimation of the hydraulic parameters of leaky aquifers based on pumping tests and coupled simulation/optimization: Verification using a layered aquifer in Tianjin, China[J]. Hydrogeology Journal, 2019, 27(8): 3081-3095. doi: 10.1007/s10040-019-02021-z
    [6] THEIS C V. The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using groundwater storage[J]. Eos, Transactions American Geophysical Union, 1935, 16(2): 483-504.
    [7] HANTUSH M S, JACOB C E. Non-steady radial flow in an infinite leaky aquifer[J]. Eos, Transactions American Geophysical Union, 1955, 36(1): 95-100. doi: 10.1029/TR036i001p00095
    [8] HANTUSH M S. Modification of the theory of leaky aquifers[J]. Journal of Geophysical Research, 1960, 65(11): 3713-3725. doi: 10.1029/JZ065i011p03713
    [9] HANTUSH M S. Flow to wells in aquifers separated by a semipervious layer[J]. Journal of Geophysical Research, 1967, 72(6): 1709-1720. doi: 10.1029/JZ072i006p01709
    [10] PAPADOPULOS I S. COOPER JR H. Drawdown in a well of large diameter[J]. Water Resources Research, 1967, 3(1): 241-244. doi: 10.1029/WR003i001p00241
    [11] LIN Y C, YANG S Y, FEN C S, et al. A general analytical model for pumping tests in radial finite two-zone confined aquifers with Robin-type outer boundary[J]. Journal of Hydrology, 2016, 540: 1162-1175. doi: 10.1016/j.jhydrol.2016.07.028
    [12] LIN Y C, YEH H D. A lagging model for describing drawdown induced by a constant-rate pumping in a leaky confined aquifer[J]. Water Resources Research, 2017, 53(10): 8500-8511. doi: 10.1002/2017WR021115
    [13] LIN Y C, HUANG C S, YEH H D. Analysis of unconfined flow induced by constant rate pumping based on the lagging theory[J]. Water Resources Research, 2019, 55(5): 3925-3940. doi: 10.1029/2018WR023893
    [14] CHEN C, ZHANG W, HONG Z, et al. New semi-analytical model for an exponentially decaying pumping rate with a finite-thickness skin in a leaky aquifer[J]. Journal of Hydrologic Engineering, 2020, 25(8): 04020037-04020037. doi: 10.1061/(ASCE)HE.1943-5584.0001956
    [15] 陈晨, 文章, 梁杏, 等. 江汉平原典型含水层水文地质参数反演[J]. 地球科学, 2017, 42(5): 727-733. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705007.htm

    CHEN C, WEN Z, LIANG X, et al. Estimation of hydrogeological parameters for representative aquifers in Jianghan Plain[J]. Earth Science, 2017, 42(5): 727-733. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705007.htm
    [16] 李霞, 文章, 梁杏, 等. 基于解析法和数值法的非稳定流抽水试验参数反演[J]. 地球科学, 2017, 42(5): 743-750. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705009.htm

    LI X, WEN Z, LIANG X, et al. Aquifer parameter estimation of transient pumping test based on analytical and numerical methods[J]. Earth Science, 2017, 42(5): 743-750. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705009.htm
    [17] 魏世毅, 万军伟, 孙伟, 等. 考虑井储效应的双重介质单孔抽水非稳定流解析模型[J/OL]. 地球科学, http://kns.cnki.net/kcms/detail/42.1874.P.20220314.0958.003.html.

    WEI S Y, WAN J W, SUN W, et al. Analytical model of unsteady flow for single-hole pumping in dual media considering well storage effect[J/OL]. Earth Science, http://kns.cnki.net/kcms/detail/42.1874.P.20220314.0958.003.html. (in Chinese with English abstract)
    [18] 吴三元, 白革学. 水文地质勘探深孔施工工艺[J]. 西部探矿工程, 2006(4): 194. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200604095.htm

    WU S Y, BAI G X. Construction technology for ultra deep holes in hydrogeological exploration[J]. West-China Exploration Engineering, 2006(4): 194. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200604095.htm
    [19] 张家军, 雷艳. 水文地质超深孔抽水试验工艺技术探索[J]. 探矿工程(岩土钻掘工程), 2015, 42(5): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201505010.htm

    ZHANG J J, LEI Y. Technical exploration of pumping test process in deep hydrogeological hole[J]. Exploration Engineering (Rock & Soil Drilling And Tunneling), 2015, 42(5): 40-45. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201505010.htm
    [20] 何金. 矿山水文地质超深孔抽水试验工艺技术探索[J]. 世界有色金属, 2019(15): 129-130. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201915079.htm

    HE J. Technical exploration of deep-hole pumping test in mine hydrogeology[J]. World Nonferrous Metals, 2019(15): 129-130. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201915079.htm
    [21] WANG Q R, ZHAN H B. The effect of intra-wellbore head losses in a vertical well[J]. Journal of Hydrology, 2017, 548: 333-341. doi: 10.1016/j.jhydrol.2017.02.042
    [22] MEYER J R, PARKER B L, CHERRY J A. Characteristics of high-resolution hydraulic head profiles and vertical gradients in fractured sedimentary rocks[J]. Journal of Hydrology, 2014, 517: 493-507. doi: 10.1016/j.jhydrol.2014.05.050
    [23] ZHENG G, ZHANG T, DIAO Y. Mechanism and countermeasures of preceding tunnel distortion induced by succeeding EPBS tunnelling in close proximity[J]. Computers and Geotechnics, 2015, 66: 53-65. doi: 10.1016/j.compgeo.2015.01.008
    [24] 王晓燕, 李文鹏, 安永会, 等. 抽水试验中不同位置自动水位计响应数据应用分析[J]. 水文地质工程地质, 2022, 49(3): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203006.htm

    WANG X Y, LI W P, AN Y H, et al. An analysis of automatic water level monitors data at different positions in a pumping test[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 57-64. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203006.htm
    [25] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    LUO M M, ZHOU H, GUO X L, et al. Process and source analysis of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0054
    [26] 黄康, 孙蓉琳, 袁淑卿, 等. 抽水组数和先验信息对估算三维非均质含水层渗透系数的影响[J]. 地球科学, 2022, 47(2): 689-699. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202024.htm

    HUANG K, SUN R l, YUAN S Q, et al. Effect of number of pumping tests and prior information on hydraulic conductivity estimation of three-dimensional heterogeneous aquifer[J]. Earth Science, 2022, 47(2): 689-699. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202024.htm
    [27] 齐跃明, 吴佳欣, 王旭升, 等. 变径抽水井降深和涌水量关系的混合井模型[J]. 地质科技通报, 2023, 42(4): 65-74. doi: 10.19509/j.cnki.dzkq.tb20220699

    QI Y M, WU J X, WANG X S, et al. Mixed-well model of the relation between drawdown and water inflow in a pumping well with variable-diameter[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 65-74. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220699
    [28] 李善禄, 吴永斌. 天山胜利隧道地下水系统划分及涌水量计算方法研究[J]. 交通世界, 2022(13): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JTSJ202213029.htm

    LI S L, WU Y B. Research on groundwater system division and water inflow calculation method of Tianshan Shengli tunnel[J]. TranspoWorld, 2022(13): 80-83. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JTSJ202213029.htm
    [29] BOULTON N S. Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage[J]. Ice Proceedings, 2015, 26(3): 469-482.
    [30] NEUMAN S P. Theory of flow in unconfined aquifers considering delayed response of the water table[J]. Water Resources Research, 1972, 8(4): 1031-1045.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  225
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 录用日期:  2023-11-01
  • 修回日期:  2023-04-16

目录

    /

    返回文章
    返回