留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆512矿床砂岩型铀矿孔隙特征及渗流模拟

刘亚玲 黎广荣 周义朋 孙占学 赵凯 刘金辉 徐玲玲

刘亚玲, 黎广荣, 周义朋, 孙占学, 赵凯, 刘金辉, 徐玲玲. 新疆512矿床砂岩型铀矿孔隙特征及渗流模拟[J]. 地质科技通报, 2024, 43(4): 205-218. doi: 10.19509/j.cnki.dzkq.tb20230134
引用本文: 刘亚玲, 黎广荣, 周义朋, 孙占学, 赵凯, 刘金辉, 徐玲玲. 新疆512矿床砂岩型铀矿孔隙特征及渗流模拟[J]. 地质科技通报, 2024, 43(4): 205-218. doi: 10.19509/j.cnki.dzkq.tb20230134
LIU Yaling, LI Guangrong, ZHOU Yipeng, SUN Zhanxue, ZHAO Kai, LIU Jinhui, XU Lingling. Pore characteristics and seepage simulation of sandstone-type uranium ore in the 512 deposit, Xinjiang[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 205-218. doi: 10.19509/j.cnki.dzkq.tb20230134
Citation: LIU Yaling, LI Guangrong, ZHOU Yipeng, SUN Zhanxue, ZHAO Kai, LIU Jinhui, XU Lingling. Pore characteristics and seepage simulation of sandstone-type uranium ore in the 512 deposit, Xinjiang[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 205-218. doi: 10.19509/j.cnki.dzkq.tb20230134

新疆512矿床砂岩型铀矿孔隙特征及渗流模拟

doi: 10.19509/j.cnki.dzkq.tb20230134
基金项目: 

国家自然科学基金项目 42072285

国家自然科学基金项目 41772266

中央引导地方科技发展专项 2018ZDB40001

详细信息
    作者简介:

    刘亚玲, E-mail: 2444098532@qq.com

    通讯作者:

    黎广荣, E-mail: liguangrong0086@ecut.edu.cn

  • 中图分类号: P619.14

Pore characteristics and seepage simulation of sandstone-type uranium ore in the 512 deposit, Xinjiang

More Information
  • 摘要:

    地浸采铀工艺是溶浸液在含矿含水层中与铀矿物发生反应, 铀元素随溶浸液迁移至地表的一种提铀工艺, 精确了解矿区岩石内部结构及金属矿物的分布, 对地浸工艺应用具有重要的指导意义。为了解512矿床岩石内部结构及渗流路径, 选取该矿床代表性围岩和矿石岩心进行CT扫描, 经过图像降噪滤波、图像分割提取孔隙、构建孔隙网络模型等处理与分析, 获得各孔喉参数; 通过Avizo软件模拟得到绝对渗透率、迂曲率和渗流速度变化。结果表明: 围岩和矿石的孔隙度相近, 分别为15.42%, 15.18%;连通孔隙度分别是9.61%, 13.82%。围岩中高密度物质为一些金属矿物, 体积分数约为0.54%, 矿石中高密度矿物多为次生铀矿物, 体积分数为1.06%, 其在浸出过程中可与溶浸液充分接触。孔隙内部具有强烈的非均质性, 导致流速在流动路径中逐渐降低。围岩和矿石连通的大孔数量多于小孔, 指示大孔是决定孔隙发育程度的主要因素。根据速度流线推断围岩和矿石中虽然存在堵塞区, 但流通区域占主导地位。

     

  • 图 1  新疆512矿床岩心样品

    a, b.野外岩心特征; c.围岩单偏光镜下特征; d.矿石反射光镜下特征; Kp.钾长石; Q.石英; Py.黄铁矿

    Figure 1.  Drill cores of the 512 deposit, Xinjiang

    图 2  围岩及矿石二维CT断层图像及三维岩心

    Figure 2.  Two-dimensional CT fault images and three-dimensional cores of wallrock and ore

    图 3  围岩和矿石中值滤波处理图像

    a.围岩滤波前;b.围岩滤波后;c.矿石滤波前;d.矿石滤波后

    Figure 3.  Median filtering processes for the image of wallrock and ore

    图 4  孔隙度与边长体素变化规律曲线图

    Figure 4.  Change law curve of the porosity and side length voxel

    图 5  围岩与矿石阈值分割前后对比

    a.围岩阈值分割前;b.围岩阈值分割后;c.矿石阈值分割前;d.矿石阈值分割后; 蓝色为孔隙,灰色为岩石骨架; 下同

    Figure 5.  Comparison before and after threshold segmentation of wallrock and ore

    图 6  围岩及矿石孔隙分布情况

    a.围岩孔隙与基质;b.围岩孔隙;c.矿石孔隙与基质;d.矿石孔隙

    Figure 6.  Pore distribution of the wallrock and ore

    图 7  样品逐层面孔隙度分布图

    Figure 7.  Layer-by-layer surface porosity distribution of the sample

    图 8  围岩和矿石连通孔隙与孤立孔隙分布

    a.围岩连通孔隙;b.矿石连通孔隙;c.围岩孤立孔隙;d.矿石孤立孔隙

    Figure 8.  Connected pore versus isolated pore distribution of wallrock and ore

    图 9  孔隙网络模型及内部展示

    a.围岩网络模型;b.矿石网络模型;c.围岩模型内部展示;d.矿石模型内部展示

    Figure 9.  Pore network model and internal display

    图 10  围岩、矿石孔隙等效半径及配位数分布直方图

    Figure 10.  Histogram of the equivalent radius and coordination distribution of the wallrock and ore pores

    图 11  围岩、矿石孔隙等效半径及长度分布直方图

    Figure 11.  Histogram of the radius and lengths distribution of the wallrock and ore throats

    图 12  围岩、矿石高密度金属矿物分布与孔隙接触关系

    a.围岩金属矿物分布;b.围岩矿物与孔隙(红色为金属矿物;蓝色为孔隙);c.矿石金属矿物分布;d.矿石矿物与孔隙(红色为金属矿物, 蓝色为孔隙)

    Figure 12.  Relationship between the distribution of wallrocks and ore high-density metal minerals and pores contacts

    图 13  围岩和矿石扫描电镜照片

    a, b.矿石样品; c, d.围岩样品; Pit.沥青铀矿;Py.黄铁矿

    Figure 13.  Scan electron microscopy photos of wallrock and ore

    图 14  围岩、矿石渗流速度流线图

    a.围岩模拟流线;b.矿石模拟流线; 流线颜色从红色、黄色、绿色再到蓝色表示流速依次降低

    Figure 14.  Flow velocity streamline of the wallrock and ore

    表  1  围岩和矿石不同边长体素正方体孔隙度

    Table  1.   Porosity of cubes with different side lengths voxels of wallrock and ore

    序号 边长体素 围岩孔隙度/% 矿石孔隙度/%
    1 200 19.73 10.19
    2 300 18.18 9.78
    3 400 16.97 10.77
    4 500 17.63 12.59
    5 600 16.40 13.26
    6 700 16.18 14.02
    7 800 15.42 15.18
    8 900 15.51 15.51
    9 1 000 16.00 15.92
    下载: 导出CSV

    表  2  样品渗流模拟结果

    Table  2.   Seepage simulation results for the wall rock samples

    样品 方向 流量/mm3 迂曲率 绝对渗透率/10-3 μm2
    矿石 X 8.67 1.98 344.8
    Y 6.71 1.87 266.9
    Z 5.81 1.71 231.1
    围岩 X 0.53 1.89 13.3
    Y 0.54 2.02 13.5
    Z 0.13 1.83 3.2
    下载: 导出CSV
  • [1] 阙为民, 王海峰, 田时丰, 等. 我国地浸采铀研究现状与发展[J]. 铀矿冶, 2005, 32(3): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI200503000.htm

    QUE W M, WANG H F, TIAN S F, et al. Research status and development of in-situ leaching uranium techniques in China[J]. Uranium Mining and Metallurgy, 2005, 32(3): 113-117. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI200503000.htm
    [2] 胡鹏华, 李先杰, 陈刚, 等. 中国地浸采铀安全环保现状与展望[J]. 铀矿冶, 2019, 38(1): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI201901014.htm

    HU P H, LI X J, CHEN G, et al. Present situation and development of ISL radiation protection and regulation in China[J]. Uranium Mining and Metallurgy, 2019, 38(1): 70-74. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI201901014.htm
    [3] 黎广荣, 周义朋, 赵凯, 等. 砂岩型铀矿浸出矿物工艺学研究进展[J]. 有色金属(冶炼部分), 2021(8): 9-19. doi: 10.3969/j.issn.1007-7545.2021.08.002

    LI G R, ZHOU Y P, ZHAO K, et al. Research progress on mineral leaching technology of sandstone type uranium deposits[J]. Nonferrous Metals (Extractive Metallurgy), 2021(8): 9-19. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-7545.2021.08.002
    [4] 孙占学, FIAZ A, 赵凯, 等. 中国铀矿采冶回顾与展望[J]. 有色金属(冶炼部分), 2021(8): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202108002.htm

    SUN Z X, FIAZ A, ZHAO K, et al. Review and prospect of uranium mining and metallurgy in China[J]. Nonferrous Metals (Extractive Metallurgy), 2021(8): 1-8(in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-METE202108002.htm
    [5] 王军, 耿树方. 伊犁盆地库捷尔太铀矿床层间氧化带与铀矿化特征研究[J]. 中国地质, 2009, 36(3): 705-713. doi: 10.3969/j.issn.1000-3657.2009.03.017

    WANG J, GENG S F. Characteristics of the interlayer oxidation zone and the Kujieertai uranium deposit in Yili Basin[J]. Geology in China, 2009, 36(3): 705-713. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2009.03.017
    [6] MIN M Z, XU H F, BARTON L L, et al. Biomineralization of uranium: A simulated experiment and its significance[J]. Acta Geologica Sinica, 2005, 79(1): 134-138. doi: 10.1111/j.1755-6724.2005.tb00874.x
    [7] 魏观辉. 试论512铀矿床富矿控矿因素、成矿模式及其判别标志[J]. 铀矿地质, 1999, 15(6): 321-328, 337. doi: 10.3969/j.issn.1000-0658.1999.06.001

    WEI G H. Preliminary discussion on ore controlling factors, genetic model and recognition criteria of rich uranium mineralization of uranium deposit No. 512[J]. Uranium Geology, 1999, 15(6): 321-328. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0658.1999.06.001
    [8] 秦明宽, 王正邦, 赵瑞全. 伊犁盆地512铀矿床黏土矿物特征与铀成矿作用[J]. 地球科学, 1998, 23(5): 74-78.

    QIN M K, WANG Z B, ZHAO R Q. Characteristics of clay minerals and their relationships with uranium mineralization in uranium deposit No. 512, Yili Basin[J]. Earth Science, 1998, 23(5): 74-78. (in Chinese with English abstract)
    [9] 刘金辉, 孙占学. 伊犁盆地512铀矿床成矿水文地球化学作用研究[J]. 地质找矿论丛, 2003, 18(3): 208-210. doi: 10.3969/j.issn.1001-1412.2003.03.013

    LIU J H, SUN Z X. The study on ore-forming hydrogeochemistry of 512 uranium deposit, Yili Basin[J]. Journal of Geological Prospecting, 2003, 18(3): 208-210. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1412.2003.03.013
    [10] ZHOU Y, LI G, XU L, et al. Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching: An example from the Kujieertai-Science Direct[J]. Hydrometallurgy, 2020, 191: 105209. doi: 10.1016/j.hydromet.2019.105209
    [11] 赵凯, 黎广荣, 周义朋, 等. 砂岩型铀矿浸出研究进展[J]. 有色金属(冶炼部分), 2019(6): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202108003.htm

    ZHAO K, LI G R, ZHOU Y P, et al. Research progress of leaching of sandstone-type uranium ore[J]. Nonferrous Metals (Extractive Metallurgy), 2019(6): 40-48. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-METE202108003.htm
    [12] 何小同, 陈立, 谢希良, 等. 512矿床化学解堵及酸法地浸堵塞物形成原因分析[C]//佚名. 中国核科学技术进展报告(第六卷). [出版社地不详]: [出版社不详], 2019: 346-352.

    HE X T, CHEN L, XIE X L, et al. Analysis of blockage formation reason during the acid in-situ leaching and chemical deblocking of 512 deposit[C]//Anon. Progress Report on China Nuclear Science & Technology. [S. l.]: [s. n.], 2019: 346-352. (in Chinese with English abstract)
    [13] 陈鑫睿, 刘金辉, 邢拥国, 等. 内蒙古巴彦乌拉铀矿含矿层堵塞的水文地球化学机理[J]. 有色金属(冶炼部分), 2021(10): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202110008.htm

    CHEN X R, LIU J H, XING Y G, et al. Hydrogeochemical mechanism of ore bearing bed plugging in Bayanwula uraniun deposit, Inner Mongolia[J]. Nonferrous Metals (Extractive Metallurgy), 2021(10): 58-65. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-METE202110008.htm
    [14] 刘石玉, 刘金辉, 周义朋, 等. 地浸采铀过程中含矿层堵塞特征研究[J]. 有色金属(冶炼部分), 2022(8): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202208011.htm

    LIU S Y, LIU J H, ZHOU Y P, et al. Study on characteristics of ore-containing layer blockage during in-situ leaching of uranium mining[J]. Nonferrous Metals (Extractive Metallurgy), 2022(8): 65-75. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-METE202208011.htm
    [15] 刘亚洲, 罗跃, 李寻, 等. 巴彦乌拉铀矿床酸法浸铀的水岩反应堵塞机理[J]. 有色金属(矿山部分), 2022, 74(5): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202205008.htm

    LIU Y Z, LUO Y, LI X, et al. Water rock reaction plugging mechanism of acid leaching uranium in Bayanwula uranium deposit[J]. Nonferrous Metals (Mining Section), 2022, 74(5): 44-51(in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202205008.htm
    [16] 刘迎九, 谢水波, 周泉, 等. 某铀矿床酸法地浸现场试验及化学堵塞成因分析[J]. 南华大学学报(自然科学版), 2007, 21(1): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGB200701002.htm

    LIU Y J, XIE S B, ZHOU Q, et al. The field test of acid in-stiu leaching in the uranium deposit and study on the chemical jamming[J]. Journal of University of South China (Science and Technology Edition), 2007, 21(1): 10-13. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGB200701002.htm
    [17] 张子涵, 魏文, 张杰, 等. 基于CT扫描红层砂岩孔隙多标度分形维数的确定方法[J]. 地质科技通报, 2022, 41(3): 254-263. doi: 10.19509/j.cnki.dzkq.2021.0066

    ZHANG Z H, WEI W, ZHANG J, et al. Determining method of multiscale fractal dimension of red bed sandstone pores based on CT scanning[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 254-263. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0066
    [18] YANG X L. Effect of pore-water pressure on 3D stability of rock slope[J]. International Journal of Geomechanics, 2017, 17(9): 06017015.
    [19] SOULAINE C, CREUX P, TCHELEPI H A. Micro-continuum framework for pore-scale multiphase fluid transport in shale formations[J]. Transport in Porous Media, 2019, 127(1): 85-112.
    [20] YAN C Z, ZHENG H. Fdem-flow3D: A 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing[J]. Computers and Geotechnics, 2017, 81: 212-228.
    [21] ANDREW M. A quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images[J]. Computational Geosciences, 2018, 22(6): 1503-1512.
    [22] TANG C S, ZHU C, LENG T, et al. Three-dimensional characterization of desiccation cracking behavior of compacted clayey soil using X-ray computed tomography[J]. Engineering Geology, 2019, 255: 1-10.
    [23] 郑佳, 庄建琦, 孔嘉旭, 等. 基于CT扫描的黄土孔隙结构特征研究[J]. 地质科技通报, 2022, 41(6): 211-222. doi: 10.19509/j.cnki.dzkq.2022.0210

    ZHENG J, ZHUANG J Q, KONG J X, et al. Study of loess pore structure characteristics based on CT scanning[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 211-222. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0210
    [24] ZHAO Y X, SUN Y F, LIU S M, et al. Pore structure characterization of coal by synchrotron radiation nano-CT[J]. Fuel, 2018, 215: 102-110.
    [25] LI Y R, SHI W H, AYDIN A, et al. Loess genesis and worldwide distribution[J]. Earth-Science Reviews, 2020, 201: 102947.
    [26] 胡心玲, 雷浩. 基于CT扫描技术的低渗油藏水敏效应后微观孔隙结构特征[J]. 地质科技通报, 2023, 42(2): 178-185. doi: 10.19509/j.cnki.dzkq.2022.0092

    HU X L, LEI H. Using CT scanning technology to investigate microscopic pore structure characteristics of low-permeability reservoir rocks after water sensitivity experiments[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 178-185. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0092
    [27] TANG Y J, ZHANG J Z, LI M J, et al. Origin of crude oils from the Paleogene Xingouzui Formation in the Jiangling Depression of Jianghan Basin, Central China[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107976.
    [28] LEI H, HE L, LI R S, et al. Effects of boundary layer and stress sensitivity on the performance of low-velocity and one-phase flow in a shale oil reservoir[J]. Journal of Petroleum Science and Engineering, 2019, 180: 186-196.
    [29] 高建, 吕静. 应用CT成像技术研究岩心孔隙度分布特征[J]. CT理论与应用研究, 2009, 18(2): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL200902010.htm

    GAO J, Lü J. Study of porosity distribution features using X-Ray CT[J]. Computerized Tomography Theory and Applications, 2009, 18(2): 50-57. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL200902010.htm
    [30] 马文国, 刘傲雄. CT扫描技术对岩石孔隙结构的研究[J]. 中外能源, 2011, 16(7): 54-56 https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201107008.htm

    MA W G, LIU A X. The study of the pore structure parameters in rocks by CT scanning technology[J]. Sino-Global Energy, 2011, 16(7): 54-56. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201107008.htm
    [31] 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32(3): 1019-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703010.htm

    LIU X J, XIONG J, LIANG L X, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3): 1019-1028. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703010.htm
    [32] TIWARI P, DEO M, LIN C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547-554.
    [33] WANG Y, PU J, WANG L H, et al. Characterization of typical 3D pore networks of Jiulaodong Formation shale using nano-transmission X-ray microscopy[J]. Fuel, 2016, 170: 84-91.
    [34] 潘汝江, 何翔, 肖维民, 等. CT扫描技术在岩心三维重建中的应用[J]. CT理论与应用研究, 2018, 27(3): 349-356 https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL201803011.htm

    PAN R J, HE X, XIAO W M, et al. Application of CT scanning technique in core 3D reconstruction[J]. Computerized Tomography Theory and Applications, 2018, 27(3): 349-356. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL201803011.htm
    [35] 郭源, 欧阳传湘. 基于CT扫描的低渗岩心正反向驱替提升驱油效率分析[J]. 中国科技论文, 2020, 15(4): 476-480. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202004017.htm

    GUO Y, OU YANG C X. Experimental study on improving oil displacement efficiency of low-permeability core with CT scan[J]. China Sciencepaper, 2020, 15(4): 476-480. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202004017.htm
    [36] 莫邵元, 何顺利, 栾国华, 等. 利用CT技术的超低渗岩心油水驱替特征研究[J]. 科学技术与工程, 2014, 14(9): 1671-1815. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201409006.htm

    MO S Y, HE S L, LUAN G H, et al. Use of CT technology to investigate water flooding in ultra-low permeability sandstone[J]. Science Technology and Engineering, 2014, 14(9): 1671-1815. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201409006.htm
    [37] 施兴华. 煤中微裂隙结构特征及其对煤渗透性的控制机理[D]. 河南焦作: 河南理工大学, 2018.

    SHI X H. Coal microfracture characteristics and its controlling mechanism on coal permeability[D]. Jiaozhuo Henan: Henan Polytechnic University, 2018. (in Chinese with English abstract)
    [38] GAMSON P, BEAMISH B, JOHNSON D. Coal microstructure and secondary mineralization: Their effect on methane recovery[J]. Geological Society, London, Special Publications, 1996, 109(1): 165-179.
    [39] GAMSON P D, BEAMISH B B, JOHNSON D P. Coal microstructure and micropermeability and their effects on natural gas recovery[J]. Fuel, 1993, 72(1): 87-99.
    [40] HERIAWAN M N, KOIKE K. Coal quality related to microfractures identified by CT image analysis[J]. International Journal of Coal Geology, 2015, 140: 97-110.
    [41] ZHANG Y H, LEBEDEV M, SARMADIVALEH M, et al. Swelling effect on coal micro structure and associated permeability reduction[J]. Fuel, 2016, 182: 568-576.
    [42] LI T, WU C F, LIU Q. Characteristics of coal fractures and the influence of coal facies on coalbed methane productivity in the South Yanchuan Block, China[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 625-632.
    [43] CHEN Y, TANG D Z, XU H, et al. Pore and fracture characteristics of different rank coals in the eastern margin of the Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1264-1277.
    [44] VANDERSTEEN K, BUSSELEN B, VAN DEN ABEELE K, et al. Quantitative characterization of fracture apertures using microfocus computed tomography[J]. Geological Society, London, Special Publications, 2003, 215(1): 61-68.
    [45] LUO X P, ZHANG Y B, ZHOU H P, et al. Pore structure characterization and seepage analysis of ionic rare earth orebodies based on computed tomography images[J]. International Journal of Mining Science and Technology, 2022, 32(2): 411-421.
    [46] CHEN W X, ZHOU F, WANG H Q, et al. The occurrence states of rare earth elements bearing phosphorite ores and rare earth enrichment through the selective reverse flotation[J]. Minerals, 2019, 9(11): 698-707.
    [47] WANG X B, YAO M T, LI J S, et al. China's rare earths production forecasting and sustainable development policy implications[J]. Sustainability, 2017, 9(6): 1003.
    [48] FENG J, ZHOU F, CHI R A, et al. Effect of a novel compound on leaching process of weathered crust elution-deposited rare earth ore[J]. Minerals Engineering, 2018, 129: 63-70.
    [49] ZHOU L B, WANG X J, HUANG C G, et al. Development of pore structure characteristics of a weathered crust elution-deposited rare earth ore during leaching with different valence cations[J]. Hydrometallurgy, 2021, 201: 105579.
    [50] LIANG Z J, WANG C S, ZHOU Y. Analysis of seepage characteristics of complex pore structure rock by digital core method[J]. Chemistry and Technology of Fuels and Oils, 2020, 55(6): 756-64.
    [51] YIN S H, CHEN X, YAN R F, et al. Pore structure characterization of undisturbed weathered crust elution-deposited rare earth ore based on X-ray micro-CT scanning[J]. Minerals, 2021, 11(3): 236.
    [52] HUANG S X, FENG J, YU J X, et al. Adsorption and desorption performances of ammonium on the weathered crust elution-deposited rare earth ore[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 126139.
    [53] WANG G, QIN X J, HAN D Y, et al. Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures[J]. Int. J. Min. Sci. Technol., 2021, 31(2): 175-185.
    [54] 廖强. 致密砂岩数字岩心重构及渗流模拟[D]. 北京: 中国地质大学(北京), 2020.

    LIAO Q. Digital core reconstruction and seepage simulation of tight sandstone[D]. Beijing: China University of Geosciences (Beijing), 2020. (in Chinese with English abstract)
    [55] 王伟明, 卢双舫, 李杰, 等. 致密砂岩储层微观孔隙特征评价: 以中国吐哈盆地为例[J]. 天然气地球科学, 2016, 27(10): 1828-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201610008.htm

    WANG W M, LU S F, LI J, et al. Analyses of micro-pore structural characteristics of tight sandstone reservoirs: A case study in Turpan-Hami Basin, northwestern China[J]. Natural Gas Geoscience, 2016, 27(10): 1828-1836. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201610008.htm
    [56] 沈珊, 卢双舫, 唐明明等. 致密砂岩储层微观孔喉表征及渗流模拟[J]. 河南科学, 2016, 34(10): 1699-1705. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201610020.htm

    SHEN S, LU S F, TANG M M, et al. Micro scopic pore throat characterization and seepage stimulation of tight sandstone reservoir[J]. Henan Science, 2016, 34(10): 1699-1705. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX201610020.htm
    [57] 殷艳玲, 孙志刚, 王军, 等. 胜利油田致密砂岩油藏微观孔隙结构特征[J]. 新疆石油地质, 2015, 36(6): 693-695. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201506011.htm

    YIN Y L, SUN Z G, WANG J, et al. Micro scopic pore structure characteristics of tight sandstone reservoirs in Shengli Oilfield[J]. Xinjiang Petroleum Geology, 2015, 36(6): 693-695. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201506011.htm
    [58] 周义朋, 黎广荣, 徐玲玲, 等. 地浸采铀钻孔过滤器对溶液渗流影响的数值模拟[J]. 东华理工大学学报(自然科学版), 2018, 41(4): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201804001.htm

    ZHOU Y P, LI G R, XU L L, et al. Numerical simulation of influence of drilling filter on solution seepage during in-situ leaching of uranium[J]. Journal of East China University of Technology (Natural Science Edition), 2018, 41(4): 301-306. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201804001.htm
    [59] ZHOU Y, SHEN Z, SHI W, et al. A method for setting the artificial boundary conditions of groundwater model[J]. Open Journal of Geology, 2013, 3(2): 50-54.
    [60] WEN H, PAN Z Z, GIAMMAR D E, et al. Enhanced uranium immo bilization by phosphate amendment under variable geochemical and flow conditions: Insights from reactive transport modeling[J]. Environmental Science & Technology, 2018, 52(10): 5841-5850.
    [61] 祝永进, 史维浚, 孙占学, 等. 弱酸-中-弱碱性介质中的水-碳酸钙作用: 砂岩铀矿地浸过程中碳酸钙堵塞机理及其预防[J]. 东华理工大学学报(自然科学版), 2010, 33(4): 369-373. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201004012.htm

    ZHU Y J, SHI W J, SUN Z X, et al. The water-calcite reaction in weakacid-nutral-weakalkility media: The mechanism of block-up by carbonate in leaching and its protect[J]. Journal of East China University of Technology (Natural Science Edition), 2010, 33(4): 369-373. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201004012.htm
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  248
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 录用日期:  2023-07-17
  • 修回日期:  2023-04-27

目录

    /

    返回文章
    返回