Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area, eastern Sichuan Basin
-
摘要:
川东红星地区上二叠统吴家坪组海相富有机质页岩是四川盆地页岩气勘探的重要接替领域,目前已取得勘探突破,但如何实现规模增储、效益开发亟待攻关。基于岩石学、地球化学和含气性等测试分析资料研究了川东红星地区吴家坪组页岩源、储品质特征,探讨了优质储层发育控制因素。结果表明:吴家坪组页岩有机质类型较好,以Ⅱ1型干酪根为主,具有高TOC含量、高碳酸盐含量和高含气量的特征。页岩
w (TOC)普遍介于1%~11%之间,均值6.89%;岩性以硅质页岩和混合页岩为主,其次为灰质页岩,整体脆性矿物含量较高;储层有机质孔发育且物性较好,孔隙度普遍介于2%~5%之间,均值3.1%。研究区富有机质页岩的分布明显受沉积环境的控制,火山活动、古气候以及古生产力共同影响了页岩中有机质的富集与分布。Abstract:Objective The organic-rich shale of the Upper Permian Wujiaping Formation in the Hongxing area of eastern Sichuan is an important replacement area for shale gas exploration in the Sichuan Basin, and the exploration breakthroughs have been made. But how to achieve large-scale storage increase and efficient development needs to be tackled.
Methods This paper investigates the source and reservoir quality characteristics of the shale of the Wujiaping Formation in the Hongxing area of eastern Sichuan based on lithological, geochemical and gas-bearing test and analysis data and discusses the factors controlling the development of high-quality reservoirs.
Results The results show that the shale of the Wujiaping Formation has a good organic matter type, dominated by type Ⅱ1 kerogen, with high TOC content, high carbonate content and high gas content. The shale TOC content generally ranges from 1% to 11%, with an average value of 6.89%; the lithology is mainly siliceous shale and mixed shale, followed by calcareous shale, and the overall brittle mineral content is high; the reservoir organic matter pores are developed and have good physical properties, and the porosity generally ranges from 2% to 5%, with an average value of 3.1%. Comprehensive analysis shows that the high-quality reservoir of the Wujiaping Formation is strictly controlled by the depositional environment. The reservoir pore type is dominated by organic pores.
Conclusion Under the control of this depositional model, sea level rise and fall, volcanic activity and palaeoclimate have jointly controlled the inhomogeneity and high-quality shale reservior distribution.
-
Key words:
- organic-rich shale /
- control factor /
- Wujiaping Formation /
- Hongxing area /
- Sichuan Basin
-
图 1 川东地区构造图(a)和二叠系综合柱状图(b)(据文献[24]修改)
Figure 1. Tectonic map (a) and comprehensive Permian column map (b) of eastern Sichuan
图 4 红星地区吴二段页岩与焦页1井五峰组-龙马溪组页岩矿物组分三角图(划分方案据文献[31])
S.硅质页岩; S-1.含灰硅质页岩; S-2.混合硅质页岩; S-3.含黏土硅质页岩; C.灰质页岩; C-1.含硅灰质页岩; C-2.混合灰质页岩; C-3.含黏土灰质页岩; CM.黏土质页岩; CM-1.含硅黏土质页岩; CM-2.混合黏土质页岩; CM-3.含灰黏土质页岩; M.混合质页岩; M-1.含灰/硅混合质页岩; M-2.含黏土/硅混合质页岩; M-3.含黏土/灰混合质页岩
Figure 4. Triangular diagram of mineral fractions of the shales of the Wu Ⅱ section of the Hongxing area and the shales of the Wufeng-Longmaxi Formation of the Jiaoye 1 well
图 6 红星地区吴二段页岩氩离子抛光扫描电镜照片
a.吴二段①小层,含黏土硅质页岩,团块状和絮状有机质,可见团块状有机质内部包裹泥粒级矿物质,有机质内有机质孔较发育,部分相互连通,孔径多在50~198 nm间;b.吴二段③小层,混合质页岩,团块状有机质内包裹黏土等矿物,有机质孔较发育,孔径多在63~175 nm间;c.吴二段③小层,混合质页岩,有机质内有机质孔较发育,贴粒缝、粒内孔少量;d.吴二段④小层,含黏土硅质页岩,局部见块状有机质内有机质孔零星分布,多为圆形;e.吴二段④小层,硅质页岩,黄铁矿晶粒间充填有机质内有机质孔较发育,部分相互连通,孔径多在63~225 nm间;f.吴二段④小层,含灰/硅混合质页岩,可见黏土矿物间分布有机质,有机孔质较发育,孔径多在79~196 nm间;g.吴二段④小层,黏土质页岩,黄铁矿晶间孔少量,孔径多在106~189 nm间;h.吴二段⑤小层,混合硅质页岩,方解石粒内溶孔,孔径大小不一,部分大孔孔径大于1 μm;i.吴二段④小层,混合硅质页岩,颗粒边缘可见贴粒缝,有机质内部有机质孔较发育
Figure 6. Scanning electron microscope photo of argon ion polishing of the Wu Ⅱ section shale in the Hongxing area
图 8 红星地区吴二段页岩中凝灰岩发育分布照片
a.③小层,两条薄层凝灰岩条带,厚度分别为1 mm和3 mm,凝灰岩条带中可见极细小黄铁矿呈散点状顺层分布;b.③小层,两条薄层凝灰岩条带,厚度分别为1 mm和3 mm,凝灰岩条带中可见黄铁矿呈条带状顺层分布;c.④小层,薄层凝灰岩条带中见极细小黄铁矿呈散点状顺层分布;d.④小层,两条薄层凝灰岩条带,厚度1 mm左右,薄层凝灰岩条带中见极细小黄铁矿呈散点状顺层分布
Figure 8. Photographs showing the distribution of the Wu Ⅱ section shale in the Hongxing area
表 1 红星地区吴二段页岩含气量与含气饱和度统计
Table 1. Statistics of gas content and gas saturation of the Wu Ⅱ section shale in the Hongxing area
层位 含气量/(m3·t-1) 含气饱和度/% 气测全烃φB/% 气测甲烷φB/% 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 ⑤小层 0.76 5.81 2.73 41.11 84.70 67.83 0.81 14.31 6.70 0.77 13.40 5.51 ④小层 1.71 6.61 3.72 35.86 90.32 75.97 4.17 23.25 10.12 3.96 22.72 9.26 ③小层 0.50 10.90 4.89 15.61 85.11 69.91 3.49 16.13 9.87 3.24 15.79 8.90 ②小层 0.11 1.39 0.38 33.90 73.80 51.03 0.83 16.23 7.66 0.68 15.76 7.05 ①小层 0.56 6.33 3.35 29.08 80.43 63.04 1.75 15.88 7.33 1.59 14.74 6.51 表 2 红星地区吴二段各井凝灰岩层厚度统计
Table 2. Thickness statistics of the tuff layer in the well of the Wu Ⅱ section in the Hongxing area
层位 A井 B井 C井 D井 层数 厚度/mm 层数 厚度/mm 层数 厚度/mm 层数 厚度/mm 最小 最大 均值 总厚 最小 最大 均值 总厚 最小 最大 均值 总厚 最小 最大 均值 总厚 ⑤小层 3 0.5 1 0.8 2.4 3 1 2 1.3 3.9 3 1 2 1.7 5.0 3 1 2.3 1.8 5.4 ④小层 5 1.0 7 2.8 14.0 5 1 3 2.0 10.0 5 2 8 3.2 16.0 5 1 6.0 3.5 17.5 ③小层 30 2.0 7 3.5 105.0 31 2 10 4.9 151.9 31 1 7 3.0 94.0 30 1 15.0 3.9 117.0 ①小层 2 1.0 2 1.5 3.0 2 5 7 6.0 12.0 2 2 3 2.5 5.0 2 2 8.0 5.0 10.0 合计 40 124.4 41 177.8 41 119.1 40 149.9 -
[1] 邹才能, 赵群, 从连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htmZou C N, Zhao Q, Cong L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm [2] 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80. doi: 10.3787/j.issn.1000-0976.2021.08.007Zhang J C, Shi M, Wang D S, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.007 [3] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htmNie H K, He Z L, Liu G X, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm [4] 陈建平, 李伟, 倪云燕, 等. 四川盆地二叠系烃源岩及其天然气勘探潜力(一): 烃源岩空间分布特征[J]. 天然气工业, 2018, 38(5): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201806009.htmChen J P, Li W, Ni Y Y, et al. The Permian source rocks in the Sichuan Basin and its natural gas exploration potential (Part 1): Spatial distribution of source rocks[J]. Natural Gas Industry, 2018, 38(5): 1-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201806009.htm [5] 腾格尔, 秦建中, 附小东, 等. 川东北地区上二叠统吴家坪组烃源岩评价[J]. 古地理学报, 2010, 12(3): 234-245. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201304005.htmTenger, Qin J Z, Fu X D, et al. Hydrocarbon source rocks evaluation of the Upper Permian Wujiaping Formation in northeastern Sichuan area[J]. Journal of Palaeogeography, 2010, 12(3): 234-245(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201304005.htm [6] 张福, 黄艺, 蓝宝锋, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016Zhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0016 [7] 胡德高, 周林, 包汉勇, 等. 川东红星地区HY1井二叠系页岩气勘探突破及意义[J]. 石油学报, 2023, 44(2): 241-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202302002.htmHu D G, Zhou L, Bao H Y, et al. Breakthrough and significance of Permian shale gas exploration of Well HY1 in Hongxing area, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(2): 241-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202302002.htm [8] 王鹏威, 刘忠宝, 李雄, 等. 川东红星地区上二叠统吴家坪组页岩发育特征及其页岩气富集意义[J]. 石油与天然气地质, 2022, 43(5): 1102-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205008.htmWang P W, Liu Z B, Li X, et al. Development of the Upper Permian Wujiaping shale in Hongxing area, eastern Sichuan Basin, and its significance to shale gas enrichment[J]. Oil & Gas Geology, 2022, 43(5): 1102-1114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205008.htm [9] 罗立志, 孙玮, 韩建辉, 等. 峨眉地幔柱对中上扬子区二叠纪成藏条件影响的探讨[J]. 地学前缘, 2012, 19(6): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206019.htmLuo L Z, Sun W, Han J H, et al. Effect of Emei mantle plume on the conditions of Permian accumulation in middle-upper Yangtze area[J]. Earth Science Frontiers, 2012, 19(6): 144-154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206019.htm [10] 朱扬明, 顾圣啸, 李颖, 等. 四川盆地龙潭组高热演化烃源岩有机质生源及沉积环境探讨[J]. 地球化学, 2012, 41(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201005.htmZhu Y M, Gu S X, Li Y, et al. Biological organic source and depositional environment of over-mature source rocks of Longtan Formation in Sichuan Basin[J]. Geochimica, 2012, 41(1): 35-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201005.htm [11] 何治亮, 聂海宽, 李双建, 等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J]. 石油与天然气地质, 2021, 42(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101002.htmHe Z L, Nie H K, Li S J, et al. Differential occurrence of shale gas in the Permian Longtan Formation of Upper Yangtz region constrained by plate tectonics in the Tethyan Domain[J]. Oil & Gas Geology, 2021, 42(1): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101002.htm [12] 高平, 李双建, 何治亮, 等. 四川盆地广元-梁平古裂陷构造-沉积演化[J]. 石油与天然气地质, 2020, 41(4): 784-799. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004013.htmGeo P, Li S J, He Z L, et al. Tectonic-sedimentary evolution of Guangyuan-Liangping paleo-rift in Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(4): 784-799(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004013.htm [13] Cole G A. Graptolite-Chitinozoan reflectance and its relationship to other geochemical maturity indicators in the Silurian Qusaiba shale, Saudi Arabia[J]. Energy and Fuels, 1994, 8(6): 1443-1459. [14] Sawaki Y, Shibuya T, Kawai T, et al. Imbricated ocean-plate stratigraphy and U-Pb zircon ages from tuff beds in cherts in the Ballantrae complex, SW Scotland[J]. GSA Bulletin, 2010, 122(3/4): 454-464. [15] Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/4): 229-273. [16] Eagle M, Paytan A, Arrigo K R, et al. A comparison between excessbarium and barite as indicators of carbon export[J]. Paleoceanography, 2003, 18(1): 2101-2113. [17] 周立宏, 陈长伟, 甘华军, 等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报, 2022, 41(5): 19-30. doi: 10.19509/j.cnki.dzkq.2022.0233Zhou L H, Chen C W, Gan H J, et al. Shale formation environment and comprehensive evaluation of shale oil potential of the Lower First Member of Shahejie Formation in Qikou Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 19-30(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0233 [18] 梁霄, 马韶光, 李郭琴, 等. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力: 以四川盆地威远地区威207井为例[J]. 地质科技通报, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159Liang X, Ma S G, Li G Q, et al. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0159 [19] Gallego-Torres D, Martinez-Ruiz F, Paytan A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/4): 424-439. [20] Mort H, Jacquat O, Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: Enhanced productivity and/or better preservation[J]. Cretac. Res., 2007, 28(8): 597-612. [21] Jin C S, Li C, Algeo T J, et al. Controls on organic matter accumulation on the Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2020, 111(1): 75-87. [22] Wang N, Li M J, Tian X W, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in Lower Cambrian black shale in the upper Yangtze Platform[J]. Marine and Petroleum Geology, 2020, 120(10): 104570. [23] Chen L, Zhang B M, Chen X H, et al. Depositional environment and organic matter accumulation of the Lower Cambrian Shuijingtuo Formation in the middle Yangtze area, China[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109339. [24] 包汉勇, 赵帅, 梁榜, 等. 川东红星地区二叠系吴家坪组页岩气富集高产主控因素与勘探启示[J]. 中国石油勘探, 2023, 28(1): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202301007.htmBao H Y, Zhao S, Liang B, et al. Enrichment and high yield of shale gas in the Permian Wujiaping Formation in Hongxing area of eastern Sichuan and its exploration implications[J]. China Petroleum Exploration, 2023, 28(1): 71-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202301007.htm [25] 尹赞勋, 徐道一, 浦庆余, 等. 中国地壳运动名称资料汇编[J]. 地质论评, 1965, 23(增刊): 20-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1965S1003.htmYin Z X, Xu D Y, Pu Q Y, et al. Compilation of names of crustal movements in China[J]. Geological Review, 1965, 23(S): 20-81(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1965S1003.htm [26] 胡世忠. 论东吴运动构造事件与二叠系分统界线问题[J]. 地层学杂志, 1994, 18(4): 309-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ404.015.htmHu S Z. On the event of Dongwu Movement and its relation with Permian subdivision[J]. Journal of Stratigraphy, 1994, 18(4): 309-315(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ404.015.htm [27] 何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201103001.htmHe D F, Li D S, Zhang G W, et al. Formation and evolution of multi-cycle superimposed basins in Sichuan, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201103001.htm [28] 刘树根, 孙玮, 钟勇, 等. 四川海相克拉通盆地显生宙演化阶段及其特征[J]. 岩石学报, 2017, 33(4): 1058-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704004.htmLiu S G, Sun W, Zhong Y, et al. Evolutionary episodes and their characteristics within the Sichuan marine craton basin during Phanerozoic Eon, China[J]. Acta Petrologica Sinica, 2017, 33(4): 1058-1072(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704004.htm [29] 梁新权, 周云, 蒋英, 等. 二叠纪东吴运动的沉积响应差异: 来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICPMS U-Pb年龄研究[J]. 岩石学报, 2013, 29(10): 3592-3606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310022.htmLiang X Q, Zhou Y, Jiang Y, et al. Difference of sedimentary response to Dongwu Movement: Study on LA-ICPMS U-Pb ages of detrital zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia Blocks[J]. Acta Petrologica Sinica, 2013, 29(10): 3592-3606(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310022.htm [30] 刘光祥, 金之钧, 邓模, 等. 川东地区上二叠统龙潭组页岩气勘探潜力[J]. 石油与天然气地质, 2015, 36(3): 481-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503019.htmLiu G X, Jin Z J, Deng M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(3): 481-487(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503019.htm [31] 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htmWu L Y, Hu D F, Lu Y C, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm [32] Yang R, Hao F, He S, et al. Experimental investigations on the geometry and connectivity of pore space in organic-rich Wufeng and Longmaxi shales[J]. Marine and Petroleum Geology, 2017, 84(6): 225-242. [33] Wang T, Hu D, Jia A, et al. Characteristics and influencing factors of supercritical methane adsorption in deep gas shale: A case study of marine Wufeng and Longmaxi Formations from the Dongxi area, southeastern Sichuan Basin (China)[J]. Energy & Fuels, 2022, 36(3): 1531-1546. [34] 李艳芳, 吕海刚, 张瑜, 等. 四川盆地五峰组-龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J]. 地球化学, 2015, 44(2): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502001.htmLi Y F, Lü H G, Zhang Y, et al. U-Mo covariation in marine shales of Wufeng-Longmaxi Formation in Sichuan Basin, China and its implication for identification of watermass restriction[J]. Geochimica, 2015, 44(2): 109-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502001.htm [35] 陆扬博, 马义权, 王雨轩, 等. 上扬子地区五峰组和龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学, 2017, 42(7): 1169-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707012.htmLu Y B, Ma Y Q, Wang Y X, et al. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze area[J]. Earth Science, 2017, 42(7): 1169-1184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707012.htm [36] 郭洪金. 涪陵海相页岩气富集及高产机理[M]. 北京: 科学出版社, 2020.Guo H J. Enrichment and high production mechanism of marine shale gas in Fuling area[M]. Science Press, 2020: 71-76 (in Chinese). [37] 甘玉青, 王超, 方栋梁, 等. 四川盆地焦石坝地区五峰-龙马溪组页岩元素地球化学特征及对页岩气开发的意义[J]. 石油实验地质, 2018, 40(1): 78-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201801013.htmGan Y Q, Wang C, Fang D L, et al. Element geochemical characteristics of the Wufeng-Longmaxi shale in Jiaoshiba area, Sichuan Basin and their significance to the shale gas development[J]. Petroleum Geology & Experiment, 2018, 40(1): 78-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201801013.htm [38] 邱振, 卢斌, 陈振宏, 等. 火山灰沉积与页岩有机质富集关系探讨: 以五峰-龙马溪组含气页岩为例[J]. 沉积学报, 2019, 37(6): 1296-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201906017.htmQiu Z, Lu B, Chen Z H, et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1296-1308(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201906017.htm [39] Liu G H, Zhai G Y, Zou C N, et al. A comparative discussion of the evidence for biogenic silica in Wufeng-Longmaxi siliceous shale reservoir in the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 109(11): 70-87. [40] Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1): 1-19. [41] Wedepohl K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth, 1971, 8: 307-333. [42] 林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 2008, 27(1): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200801012.htmLin Z J, Chen D F, Liu Q. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200801012.htm [43] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): 1112.