留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同类型地热水硼的地球化学特征及对地热系统成因机制的指示

尚建波 卫兴 曹园园 师红杰 刘明亮

尚建波, 卫兴, 曹园园, 师红杰, 刘明亮. 不同类型地热水硼的地球化学特征及对地热系统成因机制的指示[J]. 地质科技通报, 2024, 43(1): 288-297. doi: 10.19509/j.cnki.dzkq.tb20230156
引用本文: 尚建波, 卫兴, 曹园园, 师红杰, 刘明亮. 不同类型地热水硼的地球化学特征及对地热系统成因机制的指示[J]. 地质科技通报, 2024, 43(1): 288-297. doi: 10.19509/j.cnki.dzkq.tb20230156
SHANG Jianbo, WEI Xing, CAO Yuanyuan, SHI Hongjie, LIU Mingliang. Boron geochemical characteristics in different types of geothermal water and its indications for the genesis mechanism of geothermal systems[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 288-297. doi: 10.19509/j.cnki.dzkq.tb20230156
Citation: SHANG Jianbo, WEI Xing, CAO Yuanyuan, SHI Hongjie, LIU Mingliang. Boron geochemical characteristics in different types of geothermal water and its indications for the genesis mechanism of geothermal systems[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 288-297. doi: 10.19509/j.cnki.dzkq.tb20230156

不同类型地热水硼的地球化学特征及对地热系统成因机制的指示

doi: 10.19509/j.cnki.dzkq.tb20230156
基金项目: 

宁夏回族自治区重点研发计划项目 2022BEG03060

国家自然科学基金项目 41902257

自然资源部深部地热资源重点实验室开放基金项目 KLDGR2022G01

宁夏回族自治区财政专项项目 NXCZ20220206

地热资源勘查与开发利用山西省重点实验室开放基金项目 SX202205

详细信息
    作者简介:

    尚建波, E-mail: shangjianbo6406@163.com

    通讯作者:

    曹园园, E-mail: baiheyueeryuan1@163.com

  • 中图分类号: P641.3

Boron geochemical characteristics in different types of geothermal water and its indications for the genesis mechanism of geothermal systems

More Information
  • 摘要:

    硼是地热流体中较为保守的元素,经常伴随地热系统出现,研究其来源对揭示不同类型地热系统成因机制有重要作用。分别选取了我国高温与中低温地热系统中较为典型且具有异常高硼浓度的西藏搭格架和宁夏银川盆地地热系统,研究了不同类型地热系统地热水中硼的来源及其相关的地球化学过程。结果表明搭格架中性和弱碱性地热水中硼主要来源于围岩的溶滤与岩浆流体的贡献,搭格架酸性地热水中的硼则主要来源于地下浅层冷水的输入;而银川地热水中硼则主要来源于深层古沉积水的补给。在此基础上,结合区域地质背景及地热水的水化学特征,讨论了不同类型地热系统的成因机制。研究结果表明,地热水中硼的地球化学特征具有识别不同类型地热系统成因机制的潜力。

     

  • 图 1  研究区地质简图及采样点分布图(图a据文献[25]修改;图b据文献[9]修改;图c据文献[24]修改)

    Figure 1.  Simplified geological map of the study areas and sampling locations

    图 2  研究区地热水样Piper三线图

    Figure 2.  Piper plot of geothermal water samples in the study areas

    图 3  地热水样B, As, SO42-, Ca2+, Cl-, Br-质量浓度箱型图

    Figure 3.  Box and whisker plots of B, As, SO42-, Ca2+, Cl- and Br- concentrations of the geothermal water samples

    图 4  搭格架中性、弱碱性地热水样B与As相关图(a)、银川盆地地热水样B与Br相关图(b)

    Figure 4.  Plots of B vs As of neutral and weakly alkaline geothermal water samples from Daggyai(a), and plots of B vs Br of geothermal water samples from the Yinchuan Basin(b)

    图 5  研究区地热水样Na-K-Mg1/2三角图

    Figure 5.  Triangular diagram of Na-K-Mg1/2 of geothermal water samples in the study areas

    图 6  西藏搭格架地热系统(a)与银川盆地地热系统(b)成因机制概念模型

    Figure 6.  Conceptual model for illustrating the geneses of Daggyai, Tibet (a) and Yinchuan Basin (b)

    图 7  银川盆地地热水样Na/Cl与TDS相关图(a)、Cl/Br与Cl相关图(b)

    Figure 7.  Plots of Na/Cl vs TDS of geothermal water samples from the Yinchuan basin(a), and plots of Cl/Br vs Cl of geothermal water samples from the Yinchuan Basin(b)

    表  1  研究区水化学特征

    Table  1.   Hydrochemical characteristics of the study area

  • [1] MOHAMMADI Z, BAGHERI R, JAHANSHAHI R. Hyd-rogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran[J]. Geothermics, 2010, 39(3): 242-249. doi: 10.1016/j.geothermics.2010.06.007
    [2] WANG M M, ZHOU X, LIU Y, et al. Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China[J]. Applied Geochemistry, 2020, 119: 104639. doi: 10.1016/j.apgeochem.2020.104639
    [3] LI X, QI J, YI L, et al. Hydrochemical characteristics and evolution of geothermal waters in the eastern Himalayan syntaxis geothermal field, southern Tibet[J]. Geothermics, 2021, 97: 102233. doi: 10.1016/j.geothermics.2021.102233
    [4] 孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171-177.

    SUN H L, MA F, LIN W J, et al. Geochemical characteristics geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 2015, 34(3): 171-177. (in Chinese with English abstract)
    [5] 余浩文, 刘昭, 荣峰, 等. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318

    YU H W, LIU Z, RONG F, et al. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34-44. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0318
    [6] KAASALAINEN H, STEFÁNSSON A. The chemistry of trace elements in surface geothermal waters and steam, Iceland[J]. Chemical Geology, 2012, 330/331: 60-85. doi: 10.1016/j.chemgeo.2012.08.019
    [7] KAASALAINEN H, STEFÁNSSON A, GIROUD N, et al. The geochemistry of trace elements in geothermal fluids, Iceland[J]. Applied Geochemistry, 2015, 62(S1): 207-223.
    [8] ELENGA H I, TAN H, SU J, et al. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: Evidence from B and Sr isotopes[J]. Geochemistry, 2021, 81(3): 125797. doi: 10.1016/j.chemer.2021.125797
    [9] 郭清海, 杨晨. 西藏搭格架高温热泉中钨的水文地球化学异常[J]. 地球科学, 2021, 46(7): 2544-2554.

    GUO Q H, YANG C. Tungsten anomaly of the high-temperature hot springs in the Daggyai hydrothermal area, Tibet, China[J]. Earth Science, 2021, 46(7): 2544-2554. (in Chinese with English abstract)
    [10] 郭清海, 吴启帆. 云南腾冲热海高温地热水中汞的地球化学异常及其指示意义[J]. 地学前缘, 2020, 27(1): 103-111.

    GUO Q H, WU Q F. Hydrogeochemical anomaly of mercury in the high-temperature geothermal waters in the Rehai hydrothermal area in Tengchong[J]. Earth Science Frontiers, 2020, 27(1): 103-111. (in Chinese with English abstract)
    [11] GUO Q H, PLANER-FRIEDRICH B, LUO L, et al. Speciation of antimony in representative sulfidic hot springs in the YST geothermal province(China) and its immobilization by spring sediments[J]. Environmental Pollution, 2020, 266(Pt 1): 115221.
    [12] 庄亚芹, 郭清海, 刘明亮, 等. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例[J]. 地球科学, 2016, 41(9): 1499-1510.

    ZHUANG Y Q, GUO Q H, LIU M L, et al. Geochemical simulation of thioarsenic speciation in high-temperature, sulfide-rich hot springs: A case study in the Rehai hydrothermal area, Tengchong, Yunnan[J]. Earth Science, 2016, 41(9): 1499-1510. (in Chinese with English abstract)
    [13] GURAV T, SINGH H K, CHANDRASEKHARAM D. Major and trace element concentrations in the geothermal springs along the west coast of Maharashtra, India[J]. Arabian Journal of Geosciences, 2016, 9(1): 44. doi: 10.1007/s12517-015-2139-2
    [14] GUO Q H, PLANER-FRIEDRICH B, LIU M L, et al. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 2019, 513: 32-43. doi: 10.1016/j.chemgeo.2019.03.008
    [15] LIU M L, GUO Q H, LUO L, et al. Environmental impacts of geothermal waters with extremely high boron concentrations: Insight from a case study in Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2020, 397: 106887. doi: 10.1016/j.jvolgeores.2020.106887
    [16] ELLIS A J. Quantitative interpretation of chemical characteristics of hydrothermal systems[J]. Geothermics, 1970, 2(part-P1): 516-528.
    [17] LIU M L, GUO Q H, WU G, et al. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in southern Tibet(China): Daggyai and Quzhuomu[J]. Geothermics, 2019, 82: 190-202. doi: 10.1016/j.geothermics.2019.06.009
    [18] AGGARWAL J K, PALMER M R, BULLEN T D, et al. The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems[J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 579-585. doi: 10.1016/S0016-7037(99)00300-2
    [19] PALMER M R, STURCHIO N C. The boron isotope systematics of the Yellowstone National Park(Wyoming) hydrothermal system: A reconnaissance[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2811-2815. doi: 10.1016/0016-7037(90)90015-D
    [20] 吴俐俐, 马文展, 唐渊. 青藏高原高硼卤水的水化学特征及其成因[J]. 地理研究, 1984, 3(4): 1-11.

    WU L L, MA W Z, TANG Y. On the water-chemical properties and formative conditions of high-boron brine in Qinghai-Xizang Plateau[J]. Geographical Research, 1984, 3(4): 1-11. (in Chinese with English abstract)
    [21] 王香桂, 伍乾富, 伍坤宇, 等. 搭格架温泉水化学特征及其约束因素研究[J]. 西北地质, 2011, 44(2): 157-164.

    WANG X G, WU Q F, WU K Y, et al. Hydrochemical characteristics and constraints of hot springs in Dagejia Geothermal Field, Tibet, China[J]. Northwestern Geology, 2011, 44(2): 157-164. (in Chinese with English abstract)
    [22] 王尊波, 沈立成, 梁作兵, 等. 西藏搭格架地热区天然水的水化学组成与稳定碳同位素特征[J]. 中国岩溶, 2015, 34(3): 201-208.

    WANG Z B, SHEN L C, LIANG Z B, et al. Characteristics of hydrochemical compositions and stable carbon isotope of natural water in the Daggyia geothermal field, Tibet, China[J]. Carsologica Sinica, 2015, 34(3): 201-208. (in Chinese with English abstract)
    [23] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459.

    WANG G L, ZHANG W, LIANG J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-459. (in Chinese with English abstract)
    [24] 陈晓晶, 虎新军, 李宁生, 等. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3): 583-589.

    CHEN X J, HU X J, LI N S, et al. A discussion on geothermal accumulation model on the eastern margin of Yinchuan Basin[J]. Geophysical & Geochemical Exploration, 2021, 45(3): 583-589. (in Chinese with English abstract)
    [25] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28.

    PAN G T, XIAO Q H, LU S N, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1-28. (in Chinese with English abstract)
    [26] 郭艳琴, 王美霞, 郭彬程, 等. 鄂尔多斯盆地西缘北部上古生界沉积体系特征及古地理演化[J]. 西北大学学报(自然科学版), 2020, 50(1): 93-104.

    GUO Y Q, WANG M X, GUO B C, et al. Sedimentary system characteristics and paleographic evolution of Upper Paleozoic of northern west margin Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2020, 50(1): 93-104. (in Chinese with English abstract)
    [27] 严烈宏, 王利, 张黎, 等. 银川盆地地热系统[M]. 银川: 宁夏人民出版社, 2002.

    YAN L H, WANG L, ZHANG L, et al. Geothermal system in Yinchuan Basin[M]. Yinchuan: Ningxia People's Publishing House, 2002. (in Chinese)
    [28] 何欣, 马悦, 刘建生, 等. 银川贺兰县地热地质条件及水化学特征研究[J]. 地下水, 2020, 42(4): 24-26.

    HE X, MA Y, LIU J S, et al. The geothermal geological conditions and hydrochemical characteristicsin Helan County, Yinchuan[J]. Ground Water, 2020, 42(4): 24-26. (in Chinese with English abstract)
    [29] 苏小四, 林学钰, 董维红, 等. 银川平原深层地下水14C年龄校正[J]. 吉林大学学报(地球科学版), 2006, 36(5): 830-836.

    SU X S, LIN X Y, DONG W H, et al. 14C age correction of deep ground water in Yinchuan Plain[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(5): 830-836. (in Chinese with English abstract)
    [30] MILLOT R, HEGAN A, NÉGREL P. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization[J]. Applied Geochemistry, 2012, 27(3): 677-688. doi: 10.1016/j.apgeochem.2011.12.015
    [31] BATTISTEL M, HURWITZ S, EVANS W C, et al. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy[J]. Journal of Volcanology & Geothermal Research, 2016, 328: 222-229.
    [32] 郭清海. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 2020, 94(12): 3544-3554.

    GUO Q H. Magma-heated geothermal systems and hydrogeochemical evidence of their occurrence[J]. Acta Geologica Sinica, 2020, 94(12): 3544-3554. (in Chinese with English abstract)
    [33] 刘明亮, 何曈, 吴启帆, 等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6): 2221-2231.

    LIU M L, HE T, WU Q F, et al. Hydrogeochemistry of geothermal waters from Xiong'an New Area and its indicating significance[J]. Earth Science, 2020, 45(6): 2221-2231. (in Chinese with English abstract)
    [34] 张梦昭, 郭清海, 刘明亮, 等. 山西忻州盆地地热水地球化学特征及其成因机制[J]. 地球科学, 2023, 48(3): 973-987.

    ZHANG M Z, GUO Q H, LIU M L, et al. Geochemical characteristics and mechanisms of the geothermal waters in the Xinzhou Basin, Shanxi Province[J]. Earth Science, 2023, 48(3): 973-987. (in Chinese with English abstract)
    [35] 方维萱, 黄转莹. 秦岭凤太及柞山沉积盆地中硼地球化学场分析及意义[J]. 地质地球化学, 2001, 29(3): 32-39.

    FANG W X, HUANG Z Y. The analysis and study of boron geochemical fields in the Qinling Orogen[J]. Geology-Geochemistry, 2001, 29(3): 32-39. (in Chinese with English abstract)
    [36] 何丹, 马致远, 王疆霞, 等. 关中盆地深部地下热水残存沉积水的同位素证据[J]. 地球科学与环境学报, 2014, 36(4): 117-126.

    HE D, MA Z Y, WANG J X, et al. Isotopic eivdence of remaining sedimentary water in the deep geothermal water of Guanzhong Basin[J]. Journal of Earth Sciences and Environment, 2014, 36(4): 117-126. (in Chinese with English abstract)
    [37] 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993.

    SHEN Z L, ZHU W H, ZHONG Z S. Fundamentals of hydrogeochemistry[M]. Beijing: Geological Publishing House, 1993. (in Chinese)
    [38] 牛新生, 黄华, 郑绵平. 江汉盆地潜江凹陷地下卤水地球化学特征和分布规律[J]. 地学前缘, 2021, 28(6): 56-65.

    NIU X S, HUANG H, ZHENG M P. Geochemical characteristics and distribution patterns of subsurface brins in the Qianjiang Depression[J]. Earth Science Frontiers, 2021, 28(6): 56-65. (in Chinese with English abstract)
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  385
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 录用日期:  2023-05-07
  • 修回日期:  2023-04-28

目录

    /

    返回文章
    返回