Discrete element simulation of the dynamic response and instability process of the Xinhua Village landslide in Baoxing County under the "6.1" Lushan earthquake
-
摘要:
斜坡浅表层是各类地震地质灾害发育的潜在破坏位置, 坡面形态和坡体结构往往造成斜坡动力响应及破坏的复杂化。为探究不稳定斜坡浅表潜在滑动层动力响应特征与失稳过程, 以芦山
M s6.1级地震触发的新华村滑坡为例, 基于现场调查采用离散元方法建立了二维计算模型, 分析了该斜坡潜在滑动层及坡面形态的动力响应特征并对其失稳过程进行了模拟。结果表明: ①斜坡浅表潜在滑动层具有强烈动力放大效应; ②微地貌对于潜在不稳定斜坡坡面的放大效应具有明显的影响, 浅表潜在滑动层水平向及竖直向加速度在凸出部位的放大效应显著, 凹陷部位相较于凸出部位放大效应较低; ③研究揭示新华村滑坡在微地貌的作用下凸起地形呈现先于凹陷地形遭受破坏, 其失稳过程分为震动放大局部震裂-凸出地形破坏-凹陷地形破坏-完全破坏整体下滑-重力堆积5个阶段。该研究结果有助于提升防灾人员对地震诱发潜在不稳定斜坡失稳的认识, 为防灾减灾提供理论和数据支撑。Abstract:Objective The shallow potential sliding layer of a slope is an important feature in seismic geological disasters. Its characteristics, such as slope shape and slope structure, tend to complicate the dynamic response and slope damage.
Methods In this paper, the landslide in Xinhua Village, triggered by the Lushan
M s 6.1 earthquake, is taken as a case study, and two-dimensional discrete element computational models are developed based on a field investigation. The dynamic response and simulate instability are investigated by comparing numerical simulations of homogeneous and heterogeneous models, representing pure terrain and a shallow potential sliding layer, respectively.Results The findings are as follows: (1) The potential sliding layer at the shallow surface of the slope exhibits significant dynamic amplification, which typically increases nonlinearly with height; (2)The slope surface shape has an obvious influence on the slope amplification effect.In the convex part, the amplification effect of the horizontal and vertical acceleration of the slope surface is significant, while the amplification effect of the concave part is lower than that of the convex part; (3) In the Xinhua Village landslide, the convex terrain is destroyed before the concave terrain under the effect of micromorphology, and its instability process is divided into five stages, namely, local seismic cracking of vibration amplification, convex terrain destruction, concave terrain destruction, complete destruction of the overall slide and gravity accumulation.
Conclusion The research results are helpful for deepening the understanding of potential unstable slopes induced by earthquakes and shedding light on disaster prevention and mitigation.
-
表 1 斜坡岩土体物理力学参数
Table 1. Physical-mechanical parameters of slope geotechnics
岩性 密度/(kg·m-3) 体积模量/GPa 剪切模量/GPa 黏聚力/MPa 内摩擦角/(°) 微新砂岩 2 650 21.50 12.2 5.0 45 强风化砂岩 2 300 9.67 6.1 0.5 35 表 2 结构面力学参数
Table 2. Mechanical parameters of the structural planes
结构面 法向刚度/GPa 剪切刚度/GPa 黏聚力/MPa 摩擦角/(°) 抗拉强度/MPa 层面 2.1 1.40 2.0 35 0.60 潜在滑动面 1.2 0.65 0.2 21 0.01 -
[1] 鲁人齐, 房立华, 郭志, 等. 2022年6月1日四川芦山Ms 6.1强震构造精细特征[J]. 地球物理学报, 2022, 65(11): 4299-4310. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202211013.htmLU R Q, FANG L H, GUO Z, et al. Detailed structural characteristics of the 1 June 2022 Ms 6.1 Sichuan Lushan strong earthquake[J]. Chinese Journal of Geophysics, 2022, 65(11): 4299-4310. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202211013.htm [2] 田述军, 孔纪名, 樊晓一, 等. 芦山地震灾区地震前后地质灾害发育规律与对比[J]. 山地学报, 2014, 32(1): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201401017.htmTIAN S J, KONG J M, FAN X Y, et al. Before and after the Lushan earthquake contrast geohazards in earthquake-stricken areas[J]. Mountain Research, 2014, 32(1): 111-116. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201401017.htm [3] 丁明涛, 程尊兰, 王青. "4.20"芦山地震灾区次生山地灾害易发性评价[J]. 山地学报, 2014, 32(1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201401018.htmDING M T, CHENG Z L, WANG Q. Susceptibility assessment on secondary mountain hazards in "4.20" Lushan earthquake-stricken area[J]. Mountain Research, 2014, 32(1): 117-123. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201401018.htm [4] 刘丽娜, 许冲, 陈剑. GIS支持下基于CF方法的2013年芦山地震滑坡因子敏感性分析[J]. 工程地质学报, 2014, 22(6): 1176-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201406026.htmLIU L N, XV C, CHEN J. Landslide factor sensitivity analyses for landslides triggered by 2013 Lushan earthquake using GIS platform and certainty factor method[J]. Journal of Engineering Geology, 2014, 22(6): 1176-1186. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201406026.htm [5] SHAO X, XU C, MA S. Preliminary analysis of coseismic landslides induced by the 1 June 2022 Ms 6.1 Lushan earthquake, China[J]. Sustainability, 2022, 14: 16554. doi: 10.3390/su142416554 [6] 庙成, 丁明涛, 王骏, 等. 芦山地震灾区次生山地灾害分布特征及其成因分析[J]. 长江流域资源与环境, 2014, 23(11): 1572-1579. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201411013.htmMIAO C, DING M T, WANG J, et al. Distribution characteristics and cause of secondary mountain hazards in Lushan earthquake-stricken area[J]. Resources and Environment in the Yangtze Basin, 2014, 23(11): 1572-1579. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201411013.htm [7] ZHAO B, LI W L, SU L, et al. Insights into the landslides triggered by the 2022 Lushan Ms 6.1 earthquake: Spatial distribution and controls[J]. Remote Sensing, 2022, 14(17): 4365. doi: 10.3390/rs14174365 [8] 陈骎, 范刚, 周家文. 复杂滑坡三维离散建模方法及其在茂县滑坡中的应用[J]. 工程地质学报, 2020, 28(4): 793-802. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004013.htmCHEN Q, FAN G, ZHOU J W. Three-dimensional discrete modeling method for complex landslide and its application in the Maoxian landslide[J]. Journal of Engineering Geology, 2020, 28(4): 793-802. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004013.htm [9] 井旭, 谢婉丽, 单帅. 原状及重塑黄土双轴试验微观力学特征离散元模拟[J]. 地质科技通报, 2021, 40(3): 184-193. doi: 10.19509/j.cnki.dzkq.2021.0311JING X, XIE W L, SHAN S. Discrete element simulation study on micromechanical characteristics of undisturbed and remolded loess in biaxial test[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 184-193. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0311 [10] 李郑梁, 李建春, 刘波, 等. 浅切割的高山峡谷复杂地形的地震动放大效应研究[J]. 工程地质学报, 2021, 29(1): 137-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101015.htmLI Z L, LI J C, LIU B, et al. Seismic motion amplification effect of shallow-cutting hill-canyon composite topography[J]. Journal of Engineering Geology, 2021, 29(1): 137-150. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101015.htm [11] 殷跃平, 王文沛, 李滨, 等. 地层场地效应对东河口地震滑坡发生影响研究[J]. 土木工程学报, 2016, 49(增刊2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2022.htmYIN Y P, WANG W N, LI B, et al. Study of stratigraphic site effect on the failure mechanism of Donghekou rockslide triggered by Wenchuan earthquake[J]. China Civil Engineering Journal, 2016, 49(S2): 126-131. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2022.htm [12] 邓天鑫, 巨能攀, 李龙起, 等. 陡倾外软硬互层斜坡动力失稳机理研究[J]. 科学技术与工程, 2016, 16(36): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201636022.htmDENG T X, JV N P, LI L Q, et al. Study on dynamic unstability mehanism of slopes with interbredded soft and hard rock beddings[J]. Science Technology and Engineering, 2016, 16(36): 133-138. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201636022.htm [13] 蔡国军, 陈锡锐, 孙文鹏, 等. 强震作用下斜坡表面放大效应的三维离散元模拟[J]. 地质科技通报, 2022, 41(2): 104-112. doi: 10.19509/j.cnki.dzkq.2022.0058CAI G J, CHEN X Y, SUN W P, et al. Three-dimensional discrete element simulation of the amplification effect of the slope surface under the action of strong earthquakes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 104-112. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0058 [14] 孙萍, 殷跃平, 陈立伟. 汶川地震区东河口滑坡破坏机制FLAC模拟分析[J]. 水文地质工程地质, 2011, 38(5): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105019.htmSUN P, YIN Y P, CHEN L W. Numerical analysis of the failure mechanism of the Donghekou rockslide in the Wenchuan earthquake region with FLAC[J]. Hydrogeology & Engineering Geology, 2011, 38(5): 87-91. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105019.htm [15] 曹琰波, 戴福初, 许冲, 等. 唐家山滑坡变形运动机制的离散元模拟[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2878-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htmCAO Y B, DAI F C, XV C, et al. Discrete element simulation of deformation and movement mechanism for Tangjiashan landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2878-2887. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm [16] 范宣梅, 方成勇, 戴岚欣, 等. 地震诱发滑坡空间分布概率近实时预测研究: 以2022年6月1日四川芦山地震为例[J]. 工程地质学报, 2022, 30(3): 729-739. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203012.htmFAN X M, FANG C Y, DAI L X, et al. Near real time prediction of spatial distribution probability of earthquake-induced landslides: Take the Lushan earthquake on June 1, 2022 as an example[J]. Journal of Engineering Geology, 2022, 30(3): 729-739. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203012.htm [17] 李单林, 刘广建, 贾瑞锋, 等. 单轴压缩试验端面摩擦效应及损伤演化规律研究[J]. 采矿与岩层控制工程学报, 2021, 3(3): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202103011.htmLI S L, LIU G J, JIA R F, et al. Study on friction effect and damage evolution of end face in uniaxial compression test[J]. Journal of Mining and Strata Control Engineering, 2021, 3(3): 99-108. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202103011.htm [18] XUE Y T, MISHRA B. Numerical simulation of the relaxation behavior of failed sandstone specimens[J]. Mining, Metallurgy & Exploration, 2020, 37: 1411-1422. [19] 雷清雄, 王运生, 贺建先, 等. 西藏俄拉村滑坡地震动态响应失稳过程[J]. 山地学报, 2017, 35(3): 332-339. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201703011.htmLEI Q X, WANG Y S, HE J X, et al. Analysis on failure process and seismic response of Ela Village landslide in Tibet[J]. Mountain Research, 2017, 35(3): 332-339. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201703011.htm [20] 李龙起, 何川, 王滔, 等. 陡倾软硬互层顺向坡强震裂隙发育特征及边际谱熵值响应规律[J]. 岩土力学, 2020, 41(10): 3456-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010032.htmLI L Q, HE C, WANG T, et al. Study on fracture development characteristics and marginal spectral entropy response of soft and hard interbedded slope with steep inclination subjected to strong earthquakes[J]. Rock and Soil Mechanics, 2020, 41(10): 3456-3464. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010032.htm [21] KUHLEMEYER R L, LYSMER J. Finite element method accuracy for wave propagation problems[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(5): 421-417. doi: 10.1061/JSFEAQ.0001885 [22] 阮志环, 王天成, 栗书亚, 等. 不同厚度砂卵石土场地地震反应特征研究[J]. 广西大学学报(自然科学版), 2021, 46(6): 1426-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202106002.htmRUAN Z H, WANG T C, LI S Y, et al. Study on seismic response characteristics of different thickness sand gravel soil site[J]. Journal of Guangxi University(Natural Science Edition), 2021, 46(6): 1426-1433. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202106002.htm [23] LUO Y H, FAN X M, HUANG R Q, et al. Topographic and near-surface stratigraphic amplification of the seismic response of a mountain slope revealed by field monitoring and numerical simulations[J]. Engineering Geology, 2020, 271: 105607. doi: 10.1016/j.enggeo.2020.105607 [24] 胡爱国, 周伟. 地震与强降雨作用下堆积体滑坡变形破坏机理及防治方案分析[J]. 中国地质灾害与防治学报, 2022, 33(1): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202201004.htmHU A G, ZHOU W. Deformation and failure mechanism and analysis on prevention measures of colluction landslide under earthquake and heavy rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 27-34. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202201004.htm [25] 毕杨杨, 王运生, 苏毅, 等. 近水平岩层阶状斜坡地震动响应特征分析[J]. 工程地质学报, 2022, 30(2): 533-541. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202202024.htmBI Y Y, WANG Y S, SU Y, et al. Analysis of seismic response to gentle stepped rock slope[J]. Journal of Engineering Geology, 2022, 30(2): 533-541. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202202024.htm [26] 马潇, 王运生, 罗永红, 等. 浑厚山体随高程增加由表及里地震动响应研究[J]. 大地测量与地球动力学, 2022, 42(12): 1288-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202212014.htmMA X, WANG Y S, LUO Y H, et al. Study on ground motion response of thick mountain from surface to interior with elevation increase[J]. Journal of Geodesy and Geodynamics, 2022, 42(12): 1288-1297. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202212014.htm [27] 冯卓, 王运生, 吴昊宸, 等. 芦山Ms 6.1级地震石棉县城谷坡动力响应特征[J]. 山地学报, 2023, 41(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202301008.htmFENG Z, WANG Y S, WU H C, et al. Dynamic response of the valley slopes to 2022 Ms 6.1 earthquake in Shimian County of Lushan, Sichuan, China[J]. Mountain Research, 2023, 42(12): 1288-1297. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202301008.htm