Numerical simulation studies on monitored natural attenuation of phenol in aquifers considering the biodegradation effect
-
摘要:
监测自然衰减(MNA)是一种应用较广的经济有效的土壤和地下水污染修复技术, 而非水相液体(NAPL)在非均质地层中的运移过程是自然衰减效果评估的重要内容。为了准确刻画多相流体在土壤及地下水中的生物降解过程, 以我国北方某典型苯酚污染场地为例, 基于连续三年的地下水质动态监测数据, 利用多相流数值模拟软件TOUGH3/TMVOCBio构建了考虑Monod生物降解过程的苯酚运移的多相流数值模型。模型再现了现状条件下多相态苯酚的空间分布和时间变化过程, 分析了吸附和Monod生物降解参数的敏感性。最后, 讨论了吸附和微生物降解参数不确定条件下, 溶解、挥发、吸附和生物降解作用去除苯酚贡献率, 对污染源处置的2种情景进行了模拟预测。研究发现, 苯酚呈现间歇性泄漏, 在地下介质中以吸附相为主, 其次为液相和气相, 最少为自由相。在参数不确定性影响下, 生物降解作用为17.91%~58.02%, 并且降水条件会影响苯酚浓度的季节性变化。在未来20年内, 在苯酚污染源完全去除和保持现状泄漏条件时, 第20年末苯酚总质量去除率分别达到98%和80%以上。识别了多相流模型中敏感性较高的生物降解参数, 为石化场地有机物生物降解过程数值模拟提供参考, 同时可为我国MNA技术的应用提供理论依据。
Abstract:Objective Monitoring natural attenuation (MNA) is a widely used, economical and effective remediation technique for soil and groundwater contamination. The migration of nonaqueous phase liquid (NAPL) in heterogeneous strata is an important element in the assessment for the efficiency of MNA.
Methods Based on three consecutive years of dynamic groundwater quality monitoring data, the purpose of this study is to accurately characterize the biodegradation processes of multiphase fluids at a typical phenol contaminated site in northern China. A multiphase flow numerical model of phenol transport considering Monod biodegradation processes based on TOUGH3/TMVOCBio software was developed and applied. The model depicted the spatial distribution and temporal variation of phenol under the current conditions well and analysed the sensitivities of the adsorption and biodegradation parameters. The paper also discussed the removal contributions of dissolution, volatilization, adsorption and biodegradation effects under uncertainty of adsorption and microbial degradation parameters and predicted two different natural attenuation scenarios for source disposal.
Results The contribution of phenol removal varies over a range under the influence of parameter uncertainty, with 17.91% to 58.02% for biodegradation, and precipitation conditions affect the seasonal variation in phenol concentrations. In the future 20 years, under the conditions with complete removal of the phenol source and the present leakage model, the total mass removal rate of phenol will arrive at 98% and 80% at the end of the 20th year, respectively.
Conclusion This paper identifies the biodegradation parameters with high sensitivity in the multiphase flow model, which provides a reference for the numerical simulation of the organic matter biodegradation process at petrochemical sites and can also provide a theoretical basis for the application of MNA technology in China.
-
表 1 模型分层和孔隙度与渗透率参数列表
Table 1. List of model layers, porosity and permeability
分层岩性 分层号 厚度/m 垂向饱和渗透率/m2 孔隙度/% 人工回填土 2~11 2~27 5×10-12 15 全-强风化层 12~16 10 3×10-12 12 中风化层 17~18 7 1×10-12 11 弱-微风化层 19~28 50 1×10-13 10 Table 2. Major parameters related to phenol adsorption and biodegradation
参数 基准取值 敏感性范围 固-液分配系数/(m3·kg-1) 0.146 0.0146~1.460 介质有机碳质量浓度/% 0.05 0.01~0.2 微生物最大利用速率/10-7s-1 1.27 0.25~6.35 基质半饱和常数/10-6(kg·kg-1) 2 1~4 微生物产出系数/(kg·kg-1) 0.5 0.1~2.5 氧气利用率/(mol·mol-1) 7.5 3.75~15.0 氧气半饱和常数/10-7(kg·kg-1) 10 2.0~50 微生物死亡速率/10-9s-1 23.1 4.10~102 -
[1] Bear J. Dynamics of fluids in porous media[M]. New York: Elsevier, 1972. [2] Dam J van. The migration of hydrocarbons in a water bearing stratum [M]. London: Inst. Petrol., 1967. [3] 薛卉, 舒彪, 陈科平, 等. CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望[J]. 地质科技通报, 2021, 40(3): 45-53. doi: 10.19509/j.cnki.dzkq.2021.0021Xue H, Shu B, Chen K P, et al. Research progress of fluid-granite interaction in CO2 based enhanced geothermal system[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 45-53(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0021 [4] Huyakorn P S, Panday S, Wu Y S. A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media. 1. Formulation [J]. Journal of Contaminant Hydrology, 1994, 16(2): 109-130. doi: 10.1016/0169-7722(94)90048-5 [5] Lari K S, Davis G B, Rayner J L, et al. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches [J]. Water Research, 2019, 157: 630-646. doi: 10.1016/j.watres.2019.04.001 [6] 马欣程, 徐红霞, 孙媛媛, 等. 氯代烃污染场地生物自然衰减修复研究进展[J]. 中国环境科学, 2022, 42(11): 5285-5298. doi: 10.3969/j.issn.1000-6923.2022.11.035Ma X C, Xu H X, Sun Y Y, et al. Research progress on biotic natural attenuation for the remediation of chlorinated hydrocarbon-contaminated sites[J]. China Environmental Sciences, 2022, 42(11): 5285-5298(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2022.11.035 [7] 周媛, 杨盼瑞, 郭会荣, 等. 注入丁醇调节重非水液相密度的微空隙试验模拟[J]. 地质科技通报, 2022, 41(1): 223-230. doi: 10.19509/j.cnki.dzkq.2022.0016Zhou Y, Yang P R, Guo H R, et al. Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid: Pore-scale experimental simulation [J]. Bulletin of Geological Science and Technology, 2022, 41(1): 223-230(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0016 [8] 宋美钰, 施小清, 康学远, 等. DNAPL场地污染通量升尺度预测的敏感性分析[J]. 地质科技通报, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262Song M Y, Shi X Q, Kang X Y, et al. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327-335(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.tb20220262 [9] 曹红, 高宗军, 蔡五田, 等. 典型污染场地含水层天然净化能力溶质模拟[J]. 南水北调与水利科技, 2014, 12(3): 65-68, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201403014.htmCao H, Gao Z J, Cai W T, et al. Solute transport simulation of natural purification ability in an aquifer at a typical contaminated site[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(3): 65-68, 103(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201403014.htm [10] 程亚平, 陈余道, 夏源, 等. 地下水位波动对燃油泄漏源区BTEX溶解影响的数值模拟[J]. 桂林理工大学学报, 2019, 39(1): 161-167. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201901020.htmCheng Y P, Chen Y D, Xia Y, et al. Numerical simulation influence of groundwater level fluctuation on BTEX dissolution in fuel oil leakage source area [J]. Journal of Guilin University of Technology, 2019, 39(1): 161-167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201901020.htm [11] 薛强. 石油污染物在地下环境系统中运移的多相流模型研究[D]. 沈阳: 辽宁工程技术大学, 2003.Xue Q. Research on multiphase flow model of petroleum pollutant transport in subsurface system[D]. Shenyang: Liaoning Technical University, 2003(in Chinese with English abstract). [12] 胡黎明, 邢巍巍, 吴照群. 多孔介质中非水相流体运移的数值模拟[J]. 岩土力学, 2007, 28(5): 951-955. doi: 10.3969/j.issn.1000-7598.2007.05.018Hu L M, Xing W W, Wu Z Q. Numerical simulation of non-aqueous phase liquids migration in porous media[J]. Rock and Soil Mechanics, 2007, 28(5): 951-955(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2007.05.018 [13] 贾智淳. 全隐式化学驱油藏数值模拟研究[D]. 合肥: 中国科学技术大学, 2016.Jia Z C. Fully implicit reservoir simulation for chemical flooding[D]. Hefei: University of Science and Technology of China, 2016(in Chinese with English abstract). [14] 陈梦佳, 吴剑锋, 孙晓敏, 等. 地下水典型非水相液体污染运移模拟的尺度提升研究[J]. 水文地质工程地质, 2020, 47(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202001002.htmChen M J, Wu J F, Sun X M, et al. Upscaling of PCE transport modeling based on UTCHEM in heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 11-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202001002.htm [15] 谢文逸, 姜登登, 李旭伟, 等. 污染地块巨厚含水层典型DNAPLs运移模拟及安全利用深度评估[J]. 环境工程学报, 2022, 16(7): 2287-2295. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202207016.htmXie W Y, Jiang D D, Li X W, et al. Transport simulation of typical DNAPLs in deep aquifer and safe utilization depth evaluation of polluted plot[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2287-2295(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202207016.htm [16] 田蕾, 胡立堂, 张梦琳. 低渗透石化污染场地多相抽提修复效率的数值模拟[J]. 中国环境科学, 2022, 42(2): 925-935. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202202047.htmTian L, Hu L T, Zhang M L. A numeriacla simulation study on remediation efficiency of multi-phase extraction (MPE) in petrochemical contaminated sites of low permeability[J]. China Environmental Science, 2022, 42(2): 925-935(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202202047.htm [17] Pope D F, Jones J. Monitored natural attenuation of petroleum hydrocarbons(EPA/600/F-98/021) [M]. Washington, DC: U.S. Environmental Protection Agency, 1999. [18] 陈然然, 祝欣, 林玉锁, 等. 氯代有机物污染场地的监控自然衰减修复初探[J]. 化工学报, 2015, 66(7): 2361-2369. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507001.htmChen R R, Zhu X, Lin Y S, et al. Preliminary inquiry of monitored natural attenuation remediation of chlorinated organic compounds contaminated sites[J]. CIESC Journal, 2015, 66(7): 2361-2369(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507001.htm [19] Surampalli R Y, Ong S K, Seagren E, et al. Natural attenuation of hazardous wastes[M]. Reston, Va: American Society of Civil Engineers, 2004. [20] U.S. Army. Remediation of contaminated army sites: Utility of natural attenuation (Report) [R]. [S. l. ]: U.S. Army Science Advisory Board, Infrastructure and Environmental Group, Department of Army, 1995. [21] Cozzarelli I M, Böhlke J K, Masoner J, et al. Biogeochemical evolution of a landfill leachate plume, norman, oklahoma[J]. Groundwater, 2011, 49(5): 663-687. [22] Blum P, Sagner A, Tiehm A, et al. Importance of heterocylic aromatic compounds in monitored natural attenuation for coal tar contaminated aquifers: A review[J]. Journal of Contaminant Hydrology, 2011, 126(3/4): 181-194. [23] 王孝维, 韩钰洁, 岳秀萍. 苯酚反硝化降解特征分析[J]. 中北大学学报: 自然科学版, 2016, 37(6): 620-625. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGG201606013.htmWang X W, Han Y J, Yue X P. Degradation characteristics analysis of phenol during denitrification [J]. Journal of North University of China: Natural Science Edition, 2016, 37(6): 620-625(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBGG201606013.htm [24] MacQuarrie K T B, Sudicky E A, Frind E O. Simulation of biodegradable organic contaminants in groundwater: 1. Numerical formulation in principal directions[J]. Water Resources Research, 1990, 26(2): 207-222. [25] Jean J, Tsai C, Ju S, et al. Biodegradation and transport of benzene, toluene, and xylenes in a simulated aquifer: Comparison of modelled and experimental results[J]. Hydrol Proc, 2002, 16(6): 3151-3168. [26] 赵梦, 骆乾坤, 刘蒙, 等. 地下水中氯代烃污染原位生物修复精细模拟研究[J]. 环境科学学报, 2022, 42(6): 178-187. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202206018.htmZhao M, Luo Q K, Liu M, et al. Simulation of in-situ bioremediation of chlorinated hydrocarbon contamination in groundwater[J]. Acta Scientiae Circumstantia, 2022, 42(6): 178-187(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202206018.htm [27] Justin W, Veronica K, William B, et al. Bacterial community dynamics in Dichloromethane-contaminated groundwater undergoing natural attenuation[J]. Frontiers in Microbiology, 2017, 8: 2300. [28] Pruess K. TOUGH2 user's guide, version 2.0[R]. Berkeley: Lawrence Berkeley National Laboratory, 1999. [29] 沈晓芳, 万玉玉, 王利刚, 等. 基于多相流数值模拟的某石油污染场地地下水中VOCs自然衰减过程识别及能力评估[J]. 地学前缘, 2021, 28(5): 90-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105013.htmShen X F, Wan Y Y, Wang L G, et al. Multiphase flow modeling of natural attenuation of volatile organic compounds (VOCs) in a petroleum contaminated site[J]. Earth Science Frontiers, 2021, 28(5): 90-103(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105013.htm [30] Jung Y, Pau G S H, Finsterle S, et al. TOUGH3 User's guide version 1.0, Lawrence Berkeley Laboratory Report LBL-2001093[R]. Berkeley, CA: Lawrence Berkeley Laboratory, 2018. [31] Battistelli A. Modeling biodegradation of organic contaminants under multiphase conditions with TMVOCBio[J]. Vadose Zone Journal, 2004, 3(3): 875-883. [32] Borden R C, Bedient P B. Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation. 1. Theoretical development[J]. Water Resource Research, 1986, 22(13): 1973-1982. [33] Waddill D W, Widdowson M A. SEAM3D: A numerical model for three dimensional solute transport and sequential electron acceptor-based bioremediation in groundwater[R]. Blacksburg: Virginia Polytechnic Institute, 1998. [34] Hu L T, Zhang K, Cao X Y, et al. IGMESH: A convenient irregular-grid-based pre- and post- processing tool for TOUGH2 simulator [J]. Computers & Geosciences, 2016, 95: 11-17. [35] 余诗航, 刘珈佑, 李占杰, 等. 高通量测序揭示某石化固废填埋场污染对土壤微生物群落结构和功能的影响[J]. 北京师范大学学报: 自然科学版, 2022, 58(2): 277-285. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ202202013.htmYu S H, Liu J Y, Li Z J, et al. Influence of pollutants on soil microbial community structure and function at a petrochemical landfill site: A high-throughput sequencing study[J]. Journal of Beijing Normal University: Natural Science, 2022, 58(2): 277-285(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ202202013.htm [36] Jung Y, Battistelli A. User's guide for biodegradation reactions in TMVOCBio[R]. Berkeley: Lawrence Berkeley National Laboratory, 2016.