留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内蒙古科尔沁右翼前旗复兴屯银铅锌多金属矿床中闪锌矿的主微量元素组成特征及其地质意义

张青 张成 段海龙 徐宏国 张欣

张青, 张成, 段海龙, 徐宏国, 张欣. 内蒙古科尔沁右翼前旗复兴屯银铅锌多金属矿床中闪锌矿的主微量元素组成特征及其地质意义[J]. 地质科技通报, 2023, 42(5): 161-174. doi: 10.19509/j.cnki.dzkq.tb20230172
引用本文: 张青, 张成, 段海龙, 徐宏国, 张欣. 内蒙古科尔沁右翼前旗复兴屯银铅锌多金属矿床中闪锌矿的主微量元素组成特征及其地质意义[J]. 地质科技通报, 2023, 42(5): 161-174. doi: 10.19509/j.cnki.dzkq.tb20230172
Zhang Qing, Zhang Cheng, Duan Hailong, Xu Hongguo, Zhang Xin. Major and trace elemental compositions and geological significance of sphalerite in the Fuxingtun Ag-Pb-Zn polymetallic deposit, Horqin Right Wing Front, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 161-174. doi: 10.19509/j.cnki.dzkq.tb20230172
Citation: Zhang Qing, Zhang Cheng, Duan Hailong, Xu Hongguo, Zhang Xin. Major and trace elemental compositions and geological significance of sphalerite in the Fuxingtun Ag-Pb-Zn polymetallic deposit, Horqin Right Wing Front, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 161-174. doi: 10.19509/j.cnki.dzkq.tb20230172

内蒙古科尔沁右翼前旗复兴屯银铅锌多金属矿床中闪锌矿的主微量元素组成特征及其地质意义

doi: 10.19509/j.cnki.dzkq.tb20230172
详细信息
    作者简介:

    张青(1969-), 女, 教授级高级工程师, 主要从事勘查学、勘查地球化学及成矿规律研究。E-mail: 736627211@qq.com

    通讯作者:

    张成(1987-), 男, 高级工程师, 主要从事矿床学、成矿规律与找矿预测研究。E-mail: 65278945@qq.com

  • 中图分类号: P618.4

Major and trace elemental compositions and geological significance of sphalerite in the Fuxingtun Ag-Pb-Zn polymetallic deposit, Horqin Right Wing Front, Inner Mongolia

  • 摘要:

    复兴屯矿床是近年来在内蒙古自治区科尔沁右翼前旗地区的勘探找矿工作中发现的大型银铅锌多金属矿床。鉴于该矿床的研究非常薄弱, 开展其成矿元素赋存特征、沉淀机制及矿床成因类型等问题的研究可为该矿床的成因研究提供理论依据。以复兴屯银铅锌多金属矿床不同阶段形成的闪锌矿为研究对象, 开展了矿相学、矿物主量元素和微量元素组成的研究, 探讨了成矿元素的沉淀机制和矿床的成因类型。结合野外调查和室内矿相学观察, 将复兴屯矿床的成矿过程划分为3个成矿阶段: 铜锌硫化物阶段(Ⅰ阶段)、铅锌硫化物阶段(Ⅱ阶段)、银锌硫化物阶段(Ⅲ阶段)。电子探针分析结果表明, 闪锌矿中Fe含量变化较大, Fe含量与Zn含量呈明显负相关关系。LA-ICP-MS分析结果表明, 由Ⅰ阶段到Ⅲ阶段, 闪锌矿中Fe, Mn, In含量逐渐降低, Ga, Ge, Sb含量略有增加。结合激光剥蚀曲线与元素间相关性图解, 元素Fe, Mn, Cd, Cu, In和Ag以类质同象形式赋存于闪锌矿之中; Pb以显微包裹体形式存在, 而Bi和Sb主要赋存于闪锌矿的方铅矿显微包裹体中。闪锌矿的微量元素组成还表明, 成矿过程中周期性的压力波动导致了闪锌矿中韵律环带的形成, 成矿流体的多次减压和降温是复兴屯矿床主要的矿质沉淀机制。综合矿床地质特征和闪锌矿微量元素特征, 我们认为复兴屯矿床为中硫化型浅成低温热液矿床。

     

  • 图 1  复兴屯矿床地质图(a)[9]A-A′(b)和B-B′(c)勘探线剖面图

    1.第四系;2.下白垩统梅勒图组;3.下白垩统白音高老组;4.上侏罗统玛尼吐组;5.次生石英岩;6.流纹斑岩脉;7.辉绿岩脉;8.逆断层;9.正断层;10.走滑断层;11.性质不明地层;12.推断断层;13.钻探区范围;14.勘探线剖面编号;15.银矿体;16.银锌矿体;17.银铅锌矿体;18.低品位铅矿体;19.低品位锌矿体;20.铜锌矿体;①.矿体编号;ZK1003.钻孔编号

    Figure 1.  Geological map of the Fuxingtun deposit (a)[9], A-A′ (b) and B-B′ (c) profiles maps for the exploration line

    图 2  复兴屯矿床成矿阶段及矿物组合

    Figure 2.  Stages of mineralization and mineral assemblage of the Fuxingtun deposit

    图 3  复兴屯矿床典型围岩蚀变照片

    a.流纹质凝灰岩发育高岭土化和菱锰矿化;b.硅化凝灰岩;c.流纹质凝灰岩发育叶腊石化和高岭土化;d.铅锌矿石中发育菱锰矿;e.流纹质凝灰岩发育菱锰矿化;f.凝灰岩发育高岭土化;g.流纹岩发育绢云母化及赤铁矿化;h.高岭土化、叶腊石化流纹岩;i.流纹岩发育绿泥石化;j.流纹质凝灰岩发育黄铁绢英岩化;k.火山角砾岩发育伊利石化;l.硅化凝灰岩。Chl.绿泥石;Gn.方铅矿;Hem.赤铁矿;Ill.伊利石;Kln.高岭土;Py.黄铁矿;Pyr.叶腊石;Q.石英;Rds.菱锰矿;Ser.绢云母;Sp.闪锌矿

    Figure 3.  Photos of typical wall rock alteration in the Fuxingtun deposit

    图 4  复兴屯矿床典型矿石照片

    a.块状铜锌矿石;b.脉状铅锌矿石中含有菱锰矿和少量黄铁矿;c.角砾状银锌矿石发育高岭土化;d.铜锌矿石中黄铜矿、黄铁矿、闪锌矿和银黝铜矿共生;e.铜锌矿石中黄铜矿、闪锌矿和方铅矿共生;f.黄铜矿、闪锌矿和方铅矿穿插早期形成的黄铁矿,黄铁矿具骸晶结构;g.铅锌矿石中黄铁矿、闪锌矿和银黝铜矿共生;h.铅锌矿石中闪锌矿、方铅矿、黄铁矿和辉银矿共生;i.银锌矿石中黄铁矿、闪锌矿、锌黝铜矿和硫锑铜银矿共生;j.破碎黄铁矿裂隙中充填石英和闪锌矿;k.银锌矿石中闪锌矿、方铅矿和辉银矿共生;l.银锌矿石中闪锌矿、方铅矿、辉银矿共生。Arg.辉银矿;Cp.黄铜矿;Fre.银黝铜矿;Gn.方铅矿;Py.黄铁矿;Rds.菱锰矿;Sp.闪锌矿;Pbs.硫锑铜银矿;Tet.黝铜矿;Q.石英

    Figure 4.  Photos of typical ores in the Fuxingtun deposit

    图 5  复兴屯矿床闪锌矿微量元素箱线图

    Figure 5.  Box plot showing the trace element compositions of the sphalerite in the Fuxingtun deposit

    图 6  复兴屯矿床闪锌矿LA-ICP-MS时间分辨率剖面图

    Figure 6.  Diagram of LA-ICP-MS signal curve of sphalerite in the Fuxingtun deposit

    图 7  复兴屯矿床闪锌矿w(In)-w(Cu)(a)、w(Ag)-w(Cu)(b)关系图

    Figure 7.  Relationship of In-Cu (a) and Ag-Cu (b) of sphalerite in the Fuxingtun deposit

    图 8  复兴屯矿床闪锌矿环带及其微量元素分布图(b图中1~7对应a图中的FX121-1~FX121-7)

    Figure 8.  Mineral zone and trace elements distribution diagram of sphalerite in the Fuxingtun deposit

    图 9  复兴屯矿床成因类型判别图

    Figure 9.  Discrimination diagrams of genetic types of the Fuxingtun deposit

    表  1  复兴屯矿床闪锌矿电子探针分析结果

    Table  1.   EPMA results of the sphalerite in the Fuxingtun deposit

    样号 阶段 Fe Co Cu Zn As S Pb In 总量 化学式
    wB/%
    FX84-2 1.45 0.07 1.32 64.53 bdl 32.79 bdl 0.16 100.32 Zn0.96Fe0.03S
    FX84-5 0.89 0.02 1.04 62.76 bdl 34.18 bdl 0.07 98.96 Zn0.9Fe0.01S
    FX89-2 7.74 bdl 3.75 52.69 bdl 34.40 0.65 bdl 99.23 Zn0.75Fe0.13S
    FX89-5 3.41 0.02 0.06 63.68 bdl 32.21 0.01 bdl 99.39 Zn0.97Fe0.06S
    FX91-5 0.99 0.12 0.08 64.45 bdl 34.24 0.17 0.11 100.16 Zn0.92Fe0.02S
    FX72-2-1 12.31 bdl bdl 53.33 0.01 33.72 bdl bdl 99.37 Zn0.78Fe0.21S
    FX72-2-2 5.74 bdl bdl 60.62 0.03 33.08 bdl bdl 99.47 Zn0.9Fe0.1S
    FX72-2-3 5.01 bdl bdl 61.51 bdl 32.62 0.07 0.03 99.24 Zn0.92Fe0.09S
    FX111-1 2.40 bdl bdl 62.79 bdl 34.34 0.11 bdl 99.64 Zn0.9Fe0.04S
    FX183-3-2 1.33 bdl bdl 64.47 bdl 32.55 0.15 0.01 98.51 Zn0.97Fe0.02S
    FX4-1 0.20 0.13 0.10 66.83 0.02 32.76 0.04 bdl 100.08 ZnS
    FX4-3 0.18 bdl 0.01 66.99 bdl 33.01 bdl bdl 100.19 Zn0.99S
    FX13-8 0.35 bdl bdl 65.95 0.04 32.76 0.05 bdl 99.15 Zn0.99S
    FX13-12 0.57 bdl 0.04 66.92 bdl 32.31 bdl 0.01 99.85 Zn1.02S
    FX13-15 2.55 bdl bdl 64.1 bdl 32.92 0.02 bdl 99.59 Zn0.95Fe0.04S
    FX15-1 1.25 bdl 1.12 64.32 0.02 32.76 0.07 bdl 99.54 Zn0.96Fe0.02S
    FX15-5 1.37 0.11 0.34 64.55 0.01 32.76 0.03 bdl 99.17 Zn0.97Fe0.02S
    FX16-3 1.12 0.12 0.29 64.84 0.05 32.87 0.04 bdl 99.33 Zn0.97Fe0.02S
    FX21-2 2.30 0.01 1.70 61.55 bdl 33.35 bdl bdl 98.91 Zn0.9Fe0.04S
    FX34-3 0.71 0.14 0.19 65.86 0.04 32.97 0.05 bdl 99.96 Zn0.98Fe0.01S
    FX34-6 0.74 bdl 0.07 65.58 bdl 32.71 bdl bdl 99.10 Zn0.98Fe0.01S
    注:bdl代表低于检测限,下同
    下载: 导出CSV

    表  2  复兴屯矿床闪锌矿LA-ICP-MS分析结果

    Table  2.   LA-ICP-MS results of the sphalerite in the Fuxingtun deposit wB/10-6

    分析点号 阶段 Mn Fe Co Ni Cu Ga Ge As Se Ag Cd In Sn Sb Tl Bi Pb
    FX72-1-3 1 151 61 272 0.58 0.03 60.3 0.04 0.40 1.06 1.43 2 050 713 89.8 0.41 0.46 bdl 0.01 250
    FX72-1-4 1 254 53 139 0.24 0.05 133 0.12 0.34 2.8 0.93 13 619 847 45.3 0.86 5.40 0.02 0.05 6 972
    FX72-2-5 1 407 71 054 0.60 0.03 117 0.07 0.45 1.88 0.65 8 927 997 72.7 0.45 4.69 0.02 bdl 11 178
    FX72-3-3 1 915 79 565 0.08 0.02 77.6 0.22 0.41 1.14 1.34 2 896 1 149 30.5 1.70 1.40 0.01 0.02 2 063
    FX72-3-4 1 448 98 271 0.01 0.07 90.4 1.55 0.55 2.42 0.75 3 609 2 010 38.8 10.3 4.86 0.02 0.02 3 774
    FX84-1 418 10 337 0.67 1.51 11 398 0.19 0.71 42.5 1.36 27.1 1 297 5 572 15.4 0.15 bdl 5.49 27.5
    FX84-2 385 10 348 0.90 1.50 2 746 0.14 0.61 40.7 1.35 14.7 1 192 1 585 13.4 0.02 bdl 0.01 0.05
    FX91-2-3 80 4 858 1.14 bdl 4 457 0.43 0.26 3.64 0.83 297 1 226 573 1.31 2.18 0.05 149 5605
    FX239-1 8 699 42 445 38.5 1.04 306 0.04 0.49 6.70 1.32 46.2 2 511 481 2.13 2.58 0.05 0.01 2.35
    FX239-2 1 422 75 771 12.8 1.16 1 114 0.51 0.62 13.4 1.21 143 2 090 735 36.1 4.17 0.05 0.26 6.68
    FX239-3 1 594 68 416 0.04 1.19 442 0.25 0.62 4.01 1.23 64.5 1 986 633 2.15 0.39 0.01 0.01 0.68
    FX239-4 2 640 99 128 0.95 1.27 4 285 2.68 1.17 3.08 1.27 581 2 208 829 605 3.76 0.19 13.1 166
    FX239-5 2 462 91 938 0.11 1.26 386 3.44 4.67 0.94 1.33 127 1 726 243 127 30.0 0.05 5.98 90.2
    FX12-1 353 2 904 3.82 3.36 1 294 14.3 2.62 154 3.21 1776 163 1.09 22.4 664 13.5 0.04 12 153
    FX12-1-3 1 732 20 615 3.40 0.02 2 442 14.6 1.29 35.7 1.15 95.3 1 370 0.96 6.44 175 0.01 0.02 91.6
    FX12-1-4 1 477 2 044 0.06 bdl 1 132 9.13 0.33 48.9 1.13 1 234 253 0.52 13.8 587 0.70 0.01 1 174
    FX12-2 282 3 331 1.24 1.57 1 521 9.74 1.25 50.9 1.36 185 1 324 7.39 53.0 76.6 0.49 0.03 16 411
    FX12-2-3 288 4 026 0.28 0.36 2 630 7.92 0.39 157 1.35 2 545 211 4.61 205 1 370 1.75 0.18 68 110
    FX17-1 719 2 524 0.84 1.44 128 0.09 0.35 5.18 1.20 13.1 1 021 0.21 1.63 0.53 bdl 0.01 0.30
    FX17-1-10 3 225 7 582 0.52 0.01 953 0.99 0.27 bdl 0.96 475 704 0.54 1.05 66.3 0.11 0.01 6.51
    FX17-1-11 81 779 3.03 0.01 19.7 0.12 0.22 bdl 0.98 20.5 564 0.32 0.24 2.02 0.01 0.01 2.34
    FX17-2 171 1 586 0.85 1.44 311 0.16 0.47 3.51 2.08 41.9 1 068 0.05 1.57 4.01 0.16 0.01 10 383
    FX72-1-1 1 055 25 246 0.24 0.15 39.0 0.96 0.28 53.7 3.13 631 581 53.4 3.08 152 3.54 0.02 528
    FX72-1-2 958 51 075 0.14 0.05 52.0 0.21 0.24 2.55 0.91 948 714 98.1 0.41 2.63 0.01 0.02 2 009
    FX72-2-1 3 007 12 815 0.04 0.02 40.9 0.67 0.35 106 0.91 700 354 32.5 1.29 357 8.43 0.01 427
    FX72-2-2 1 043 57 128 0.10 0.06 97.0 0.63 0.51 24.7 1.57 4197 1046 127 1.62 24.8 0.03 0.01 14 324
    FX72-2-3 366 26 424 0.20 0.06 34.3 0.08 0.31 3.59 0.92 128 697 78.7 0.44 2.72 0.02 0.02 9 613
    FX72-2-4 853 61 230 0.26 bdl 60.1 0.18 0.47 4.83 0.82 602 760 134 0.41 11.0 0.06 0.01 1 585
    FX72-3-1 810 63 985 0.05 0.04 58.0 0.21 0.47 0.94 1.12 122 864 133 3.08 0.46 0.01 0.01 62.7
    FX72-3-2 572 46 661 0.08 0.02 38.5 0.10 0.27 1.79 0.66 50.5 591 89.4 0.35 1.91 0.01 bdl 33.3
    FX76-2-1 1 138 51 539 4.87 1.41 890 0.10 0.59 46.7 1.25 127 1 828 215 1.92 0.50 0.10 187 12 335
    FX79-1 1 165 32 683 1.91 1.26 1 654 0.61 0.82 10.5 1.37 157 2 230 696 10.1 5.22 0.01 11.8 757
    FX94-1-1 512 1 421 1.74 bdl 508 0.04 0.19 1.00 0.84 26.5 734 924 1.22 0.66 bdl 0.75 7.85
    FX94-1-2 43 1 401 0.58 0.02 180 1.59 0.24 1.73 1.33 14.7 998 304 5.06 3.45 0.01 0.05 1.30
    FX94-1-3 95.3 3 001 0.73 0.03 1 512 0.07 0.23 0.82 0.83 24.1 785 2 652 9.37 1.01 bdl 0.06 0.81
    FX94-1-4 69.8 2 041 0.57 bdl 771 0.07 0.17 0.92 0.93 10.6 867 1 458 5.59 0.01 bdl bdl 0.02
    FX94-1-5 359 12 954 0.22 0.03 3 527 0.04 0.08 0.65 0.92 41.7 548 6 323 0.44 bdl bdl bdl 0.03
    FX117-1 995 27 937 4.67 1.54 48.9 0.46 0.66 7.58 1.66 1.84 1 907 71.2 1.43 0.02 bdl 0.01 0.67
    FX117-2 713 20 260 1.70 1.52 29.5 1.04 0.74 8.97 1.64 2.41 2 002 45.2 2.00 0.62 0.01 0.01 1.17
    FX117-3 1 387 45 063 5.46 1.67 45.8 0.12 0.44 5.97 1.72 2.17 2 091 69.5 1.65 0.02 bdl 0.01 0.10
    FX117-4 670 28 065 1.00 1.69 1 760 0.55 0.65 12.2 1.84 27.6 1 746 238 38.5 3.37 0.07 0.75 5.94
    FX121-2-1 496 15 595 0.02 0.04 230 0.02 0.08 1.66 1.70 18.5 798 409 0.26 1.02 0.04 0.25 1.64
    FX121-2-2 1 179 38 388 0.01 0.01 22.2 0.15 0.32 0.39 1.35 4.12 1113 27.1 0.26 0.44 0.01 0.02 1.12
    FX121-2-3 144 12 536 0.03 0.03 120 0.46 0.32 0.90 1.82 12.8 1011 220 0.78 1.45 0.01 0.31 6.89
    FX121-2-4 1 269 44 596 1.58 0.03 328 0.21 0.27 0.78 1.76 6.52 1026 561 0.32 0.02 bdl bdl 0.03
    FX121-2-5 755 17 969 1.98 0.03 35.7 0.01 0.50 1.29 1.53 5.17 937 64.3 0.43 0.02 bdl 0.02 0.54
    FX121-2-6 350 8 308 1.25 0.01 134 0.05 0.26 1.07 0.69 9.12 893 246 0.36 1.16 0.01 0.16 1.19
    FX121-2-7 896 37 257 0.31 bdl 637 0.22 0.53 0.84 1.01 20.1 611 1 152 0.29 0.03 bdl 0.01 0.38
    FX131-1 232 17 757 0.04 1.09 1 778 0.04 0.34 4.70 0.89 7.26 1 076 2 263 2.22 0.79 0.01 0.08 0.65
    FX131-2 836 2 033 7.41 1.06 4.99 0.06 0.27 6.39 0.98 4.01 1 732 0.43 1.12 0.01 bdl 0.01 0.87
    FX131-3 1 224 3 275 9.85 1.06 10.0 0.12 0.26 3.72 0.90 7.91 1 757 0.14 1.25 0.16 bdl 0.02 4.70
    FX131-4 1 105 16 298 4.32 1.2 87.8 0.04 0.34 4.33 1.03 7.19 1 490 20.2 1.28 3.50 0.07 0.99 8.57
    FX173-1 1 450 19 379 8.75 1.71 4 095 0.08 0.87 29.6 1.63 19.1 1 188 33.8 5.04 0.57 bdl 0.02 29.8
    FX173-2 15 233 5 965 1.64 1.5 3 732 0.26 0.59 37.1 1.42 47.7 1 153 16.5 2.28 8.02 0.09 17.7 156 625
    FX233-1 1 617 47 242 1.80 1.33 860 5.82 1.22 42.4 1.27 1 677 2 313 112 214 13.8 bdl 7.40 10 590
    FX233-2 1 401 52 619 0.75 1.33 1 712 5.36 1.10 38.6 1.26 1 805 2 693 140 298 29.9 0.01 11.7 30 928
    FX233-3 944 69 393 0.34 1.42 818 6.34 1.54 36.5 1.36 132 2 238 530 1 710 27.1 0.01 1.17 566
    FX234-1-4 670 43 056 7.68 0.09 129 6.52 0.48 29.6 1.04 476 983 230 115 17.2 0.03 2.58 3 925
    FX234-1-5 1 232 51 986 1.23 0.15 391 3.39 1.17 52.1 1.46 214 1 178 536 78.2 54.3 0.01 9.41 530
    FX237-1-3 1 305 62 973 1.15 bdl 51.1 0.90 0.68 1.12 1.25 25.7 1 057 89.4 0.70 1.38 bdl 1.36 189
    FX237-1-4 360 29 463 0.50 0.13 56.2 0.53 0.36 16.3 1.44 139 945 29.0 61.4 40.2 0.04 0.22 50.8
    FX4-1-1 130 1 525 0.05 bdl 775 5.78 1.84 9.21 0.93 89.3 1 406 0.02 2.04 24.7 0.43 0.01 9 906
    FX13-2-1 692 11 565 0.08 0.02 3454 0.55 1.88 60.2 1.04 181 1 323 0.05 2.3 455 0.04 0.20 1 657
    FX29-1 2 126 3 003 13.4 1.44 410 2.19 0.40 3.03 1.21 18.9 1 309 0.01 1.75 1.79 0.03 0.01 14.5
    FX29-2 2 182 3 011 12.7 1.48 27.6 0.88 0.61 2.90 1.26 5.26 1 323 0.01 1.77 0.10 0.01 0.01 0.68
    FX76-2-2 184 8 403 4.48 1.29 71.1 0.33 0.73 34.0 1.25 11.1 1 677 94.1 12.8 0.22 bdl 0.09 3.86
    FX81-1 572 18 422 1.83 1.49 15 175 2.11 0.85 12.4 1.59 428 1 450 496 18.5 2.05 0.16 4.24 312
    FX81-2 550 36 141 2.50 1.42 3 925 0.17 0.31 7.61 2.95 30.6 3 043 1 638 351 0.05 bdl 0.01 0.09
    FX234-1-1 166 11 026 0.61 0.01 20.2 2.38 0.64 2.56 1.08 52.9 556 1.88 2.62 22.9 0.01 0.04 23.9
    FX234-1-2 231 11 618 0.75 0.02 117 2.27 2.25 29.5 1.11 664 792 34.2 2.55 458 0.43 0.26 4 176
    FX234-1-3 155 11 217 0.33 0.02 44.3 0.85 1.06 5.36 0.91 178 731 97.0 1.80 37.6 0.03 0.50 14 228
    FX237-1-1 205 12 469 1.26 bdl 29.7 1.18 3.06 3.84 1.04 104 780 21.7 1.52 36.8 0.01 0.70 7 693
    FX237-1-2 257 14 331 2.10 0.05 77.3 1.86 5.35 16.0 0.69 185 745 38.2 1.57 85.8 0.01 0.30 5 884
    下载: 导出CSV

    表  3  不同类型浅成低温热液型矿床的主要特征[49-50]

    Table  3.   Summary of the characteristics of different types of epithermal deposits

    特征 高硫化型 中硫化型 低硫化型 复兴屯矿床
    硫化物组合 黄铁矿、硫砷铜矿、铜蓝、黄铜矿、砷黝铜矿、自然金、碲化物等 黄铁矿、闪锌矿、方铅矿、黄铜矿、黝铜矿等 黄铁矿、方铅矿、闪锌矿、毒砂、磁黄铁矿、银金矿等 黄铁矿、黄铜矿、闪锌矿、方铅矿、白铁矿、银黝铜矿、黝铜矿等
    脉石矿物 多孔石英、梳状石英、块状细粒硅化物、重晶石 石英、菱锰矿、菱铁矿、含锰碳酸盐、绢云母、玉髓、赤铁矿 玉髓、冰长石、伊利石、方解石 石英、赤铁矿、菱锰矿、方解石、绢云母、玉髓等
    闪锌矿中FeS含量xB/% <1% 1%~10%,个别可达20% >20% 1%~10%、13%、21%
    主要蚀变矿物 石英、明矾石、叶腊石、高岭石、地开石 绢云母、伊利石、高岭石、冰长石(少量) 冰长石、绢云母 绢云母、菱锰矿、高岭石,方解石,玉髓
    矿石形态 浸染状为主、脉状其次、少量网脉状 脉状、网脉状、角砾岩型、浸染状 脉状、网脉状、浸染状、角砾岩型 脉状、角砾岩型
    下载: 导出CSV
  • [1] 刘建明, 张锐, 张庆洲. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 2004, 11(1): 269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024

    Liu J M, Zhang R, Zhang Q Z. The regional metallogeny of Da Hinggan Ling, China[J]. Earth Science Frontiers, 2004, 11(1): 269-277(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2004.01.024
    [2] 葛文春, 吴福元, 周长勇, 等. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J]. 科学通报, 2007, 52(20): 2407-2417. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720014.htm

    Ge W C, Wu F Y, Zhou C Y, et al. The age of porphyry Cu, Mo ore-forming and geodynamic implications in the East Xing-Meng Orogenic Belt[J]. Chinese Science Bulletin, 2007, 52(20): 2407-2417(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720014.htm
    [3] 马星华, 陈斌, 赖勇, 等. 斑岩铜钼矿床成矿流体的出溶、演化与成矿: 以大兴安岭南段敖仑花矿床为例[J]. 岩石学报, 2010, 26(5): 1397-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005007.htm

    Ma X H, Chen B, Lai Y, et al. Fluid exsolution, evolution and mineralization in porphyry Cu-Mo deposit: A case study from the Aolunhua deposit, southern Da Xing'an Mts[J]. Acta Petrologica Sinica, 2010, 26(5): 1397-1410(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005007.htm
    [4] 匡永生, 郑广瑞, 卢民杰, 等. 内蒙古赤峰市双尖子山银多金属矿床的基本特征[J]. 矿床地质, 2014, 33(4): 847-856. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201404014.htm

    Kuang Y S, Zheng G R, Lu M J, et al. Basic characteristics of Shuangjianzishan sliver polymetallic deposit in Chifeng City, Inner Mongolia[J]. Mineral Deposits, 2014, 33(4): 847-856(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201404014.htm
    [5] 刘翼飞, 樊志勇, 蒋胡灿, 等. 内蒙古维拉斯托-拜仁达坝斑岩-热液脉状成矿体系研究[J]. 地质学报, 2014, 88(12): 2373-2385. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412016.htm

    Liu Y F, Fan Z Y, Jiang H C, et al. Genesis of the Weilasituo-Bairendaba porphyry-hydrothermal vein type system in Inner Mongolia, China[J]. Acta Geologica Sinica, 2014, 88(12): 2373-2385(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412016.htm
    [6] 何鹏, 郭硕, 张天福, 等. 大兴安岭中南段扎木钦铅锌银多金属矿床成矿物质来源及矿床成因: 来自S、Pb同位素的制约[J]. 岩石学报, 2018, 34(12): 3597-3610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812010.htm

    He P, Guo S, Zhang T F, et al. The sources of ore-forming materials and genesis of the Zhamuqin Pb-Zn-Ag polymetallic deposit in the middle-southern segment of Da Hinggan Mountains: Constraints from S, Pb isotope geochemistry[J]. Acta Petrologica Sinica, 2018, 34(12): 3597-3610(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812010.htm
    [7] 刘瑞麟, 武广, 李铁刚, 等. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义[J]. 地学前缘, 2018, 25(5): 183-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805014.htm

    Liu R L, Wu G, Li T G, et al. LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing'an Range and their geological significance[J]. Earth Science Frontiers, 2018, 25(5): 183-201(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805014.htm
    [8] 常时旗, 李海军, 王德力, 等. 数字地质调查系统在内蒙古复兴屯矿区一区资源量估算的应用[J]. 内蒙古科技与经济, 2019(17): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201917024.htm

    Chang S Q, Li H J, Wang D L, et al. Application of digital geological survey system in the estimation of resources in the No. 1 area of Fuxingtun deposit, Inner Mongolia[J]. Inner Mongolia Science Technology & Economy, 2019(17): 55-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201917024.htm
    [9] 李敏, 赵忠海, 李海军, 等. 内蒙古科右前旗复兴屯银铅锌多金属矿床的发现及其意义[J]. 黄金, 2022, 43(11): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202211002.htm

    Li M, Zhao Z H, Li H J, et al. Discovery and significance of Fuxingtun Ag-Pb-Zn polymetallic deposit in the Keyouqianqi, Inner Mongolia[J]. Gold, 2022, 43(11): 5-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202211002.htm
    [10] Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. doi: 10.2113/econgeo.111.1.105
    [11] 王启林, 张金阳, 严德天, 等. 黄铜矿微量元素对矿床成因类型的指示[J]. 地质科技通报, 2023, 42(1): 126-143. doi: 10.19509/j.cnki.dzkq.2021.0090

    Wang Q L, Zhang J Y, Yan D T, et al. Genesis type of ore deposits indicated by trace elements of chalcopyrite[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 126-143(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0090
    [12] Zhang Y, Chen H, Cheng J, et al. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China[J]. American Mineralogist, 2022, 107(10): 1910-1925. doi: 10.2138/am-2022-8118
    [13] Frenzel M, Cook N J, Ciobanu C L, et al. Halogens in hydrothermal sphalerite record origin of ore-forming fluids[J]. Geology, 2020, 48(8): 766-770. doi: 10.1130/G47087.1
    [14] 祝明明, 邹建林, 王闯, 等. 幕阜山地区断峰山铌钽矿的矿物学、年代学和赋存状态[J]. 地质科技通报, 2021, 40(6): 55-69. doi: 10.19509/j.cnki.dzkq.2021.0606

    Zhu M M, Zou J L, Wang C, et al. Mineralogy, geochronology and occurrence state of the Duanfengshan Nb-Ta deposit in Mufushan area[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 55-69(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0606
    [15] 周成胶, 张刚阳, 张丁川. 铼金属矿床类型、元素赋存形式和富集机制[J]. 地质科技通报, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431

    Zhou C J, Zhang G Y, Zhang D C. Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115-130(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0431
    [16] Benedetto R D, Bernardini G P, Costagliola P, et al. Compositional zoning in sphalerite crystals[J]. American Mineralogist, 2005, 90(8/9): 1384-1392.
    [17] Gottesmann W, Kampe A. Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo, Mongolia[J]. Geochemistry, 2007, 67(4): 323-328.
    [18] Ishihara S, Hoshino K, Murakami H, et al. Resource evaluation and some genetic aspects of indium in the Japanese ore deposits[J]. Resource Geology, 2006, 56(3): 347-364.
    [19] Ishihara S, Endo Y. Indium and other trace elements in volcanogenic massive sulfide ores from the Kuroko, Besshi and other types in Japan[J]. Bulletin of the Geological Survey of Japan, 2007, 58(1/2): 7-22.
    [20] Martín J D, Soler I Gil A. An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850℃ and up to 1 GPa[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 995-1006.
    [21] Soares Monteiro L V, Bettencourt J S, Juliani C, et al. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais, Brazil[J]. Ore Geology Reviews, 2006, 28(2): 201-234.
    [22] Wang C, Deng J, Zhang S, et al. Sediment-hosted Pb-Zn deposits in southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton[J]. Acta Geologica Sinica: English Edition, 2010, 84(6): 1428-1438.
    [23] Ye L, Cook N J, Ciobanu C L, et al. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study[J]. Ore Geology Reviews, 2011, 39(4): 188-217.
    [24] 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm

    Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 2018, 34(12): 3479-3496(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
    [25] Large R R, Danyushevsky L, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668.
    [26] Qiu K F, Marsh E, Yu H C, et al. Fluid and metal sources of the Wenquan porphyry molybdenum deposit, western Qinling, NW China[J]. Ore Geology Reviews, 2017, 86: 459-473.
    [27] Wu Y F, Evans K, Li J W, et al. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit[J]. Geochimica et Cosmochimica Acta, 2019, 245: 98-117.
    [28] 樊献科, 董永观, 秦纪华, 等. 新疆阿尔泰小土尔根铜矿床硫化物微量元素、S-Pb同位素特征及地质意义[J]. 地质论评, 2016, 62(2): 472-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201602020.htm

    Fan X K, Dong Y G, Qin J H, et al. Characteristics of trace elements and S-Pb isotope composition of sulfides in Xiaotuergen copper deposit, Altay, Xinjiang, and its geological implications[J]. Geological Review, 2016, 62(2): 472-489(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201602020.htm
    [29] 田浩浩, 张寿庭, 曹华文, 等. 豫西赤土店铅锌矿床闪锌矿微量元素地球化学特征[J]. 矿物岩石地球化学通报, 2015, 34(2): 334-342. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201502019.htm

    Tian H H, Zhang S T, Cao H W, et al. Geochemical characteristics of trace elements of sphalerite in the Chitudian Pb-Zn deposit, west Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2): 334-342(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201502019.htm
    [30] 樊树启, 刘俊杰, 徐同宝, 等. 内蒙古科尔沁右翼前旗复兴屯2区银铅锌矿地质特征及找矿标志[J]. 有色金属: 矿山部分, 2021, 73(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202101013.htm

    Fan S Q, Liu J J, Xu T B, et al. Geological characteristics and prospecting criteria of the No. 2 mining area of Fuxingtun Ag-Pb-Zn deposit in the Horqin Right Front Banner, Inner Mongolia[J]. Nonferrous Metals: Mining Section, 2021, 73(1): 75-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202101013.htm
    [31] Yang S Y, Jiang S Y, Mao Q, et al. Electron probe microanalysis in geosciences: Analytical procedures and recent advances[J]. Atomic Spectroscopy, 2022, 43(2): 186-200.
    [32] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
    [33] Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761-4791.
    [34] George L, Cook N J, Cristiana L. C, et al. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study[J]. American Mineralogist, 2015, 100(2/3): 548-569.
    [35] George L L, Cook N J, Ciobanu C L. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores[J]. Ore Geology Reviews, 2016, 77: 97-116.
    [36] Pyykk P. Refitted tetrahedral covalent radii for solids[J]. Physical Review B, 2012, 85(2): 24115.
    [37] Huston D L, Sie S H, Suter G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part Ⅰ. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 1995, 90(5): 1167-1196.
    [38] Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111-1141.
    [39] Thomas H V, Large R R, Bull S W, et al. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis[J]. Economic Geology, 2011, 106(1): 1-31.
    [40] 赛盛勋, 邱昆峰. 胶东乳山金矿床成矿过程: 周期性压力波动诱发的流体不混溶[J]. 岩石学报, 2020, 36(5): 1547-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005014.htm

    Sai S X, Qiu K F. Ore-forming processes of the Rushan gold deposit, Jiaodong: Fluid immiscibility induced by episodic fluid pressure fluctuations[J]. Acta Petrologica Sinica, 2020, 36(5): 1547-1566(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005014.htm
    [41] 蔡劲宏, 周卫宁, 张锦章. 江西银山铜铅锌多金属矿床闪锌矿的标型特征[J]. 桂林工学院学报, 1996, 16(4): 370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX604.007.htm

    Cai J H, Zhou W N, Zhang J Z. Typomorphic characteristics of sphalerites in the Yinshan copper, lead and zinc polymetallic deposits, Jiangxi[J]. Journal of Guilin Institute of Technology, 1996, 16(4): 370-375(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX604.007.htm
    [42] 叶霖, 高伟, 杨玉龙, 等. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成[J]. 岩石学报, 2012, 28(5): 1362-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205004.htm

    Ye L, Gao W, Yang Y L, et al. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit, Lancang, Yunnan Province[J]. Acta Petrologica Sinica, 2012, 28(5): 1362-1372(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205004.htm
    [43] 叶霖, 李珍立, 胡宇思, 等. 四川天宝山铅锌矿床硫化物微量元素组成: LA-ICPMS研究[J]. 岩石学报, 2016, 32(11): 3377-3393. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201911014.htm

    Ye L, Li Z L, Hu Y S, et al. Trace elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan Province, China: A LA-ICPMS study[J]. Acta Petrologica Sinica, 2016, 32(11): 3377-3393(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201911014.htm
    [44] Ruaya J R, Seward T M. The stability of chlorozinc(Ⅱ) complexes in hydrothermal solutions up to 350℃[J]. Geochimica et Cosmochimica Acta, 1986, 50(5): 651-661.
    [45] Stefánsson A, Seward T M. Experimental determination of the stability and stoichiometry of sulphide complexes of silver(Ⅰ) in hydrothermal solutions to 400℃[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1395-1413.
    [46] Hayashi K, Sugaki A, Kitakaze A. Solubility of sphalerite in aqueous sulfide solutions at temperatures between 25 and 240℃[J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 715-725.
    [47] Cooke D R, Deyell C L, Waters P J, et al. Evidence for magmatic-hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district, Philippines[J]. Economic Geology, 2011, 106(8): 1399-1424.
    [48] 胡鹏, 吴越, 张长青, 等. 扬子板块北缘马元铅锌矿床闪锌矿LA-ICP-MS微量元素特征与指示意义[J]. 矿物学报, 2014, 34(4): 461. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201404005.htm

    Hu P, Wu Y, Zhang C Q, et al. Trace and minor elements in sphalerite from the Mayuan lead-zinc deposit, northern margin of the Yangtze plate: Implications from LA-ICP-MS analysis[J]. Acta Mineralogica Sinica, 2014, 34(4): 461(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201404005.htm
    [49] Wang L, Qin K Z, Song G X, et al. A review of intermediate sulfidation epithermal deposits and subclassification[J]. Ore Geology Reviews, 2019, 107: 434-456.
    [50] Hedenquist J W, Arribas R A, Gonzalez U E. Exploration for epithermal gold deposit[J]. Reviews in Economic Geology, 2000, 13: 519-527.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  599
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 录用日期:  2023-09-11
  • 修回日期:  2023-06-28

目录

    /

    返回文章
    返回