留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖北宜昌产气页岩氧化溶蚀增渗的地球化学影响

余奇 刘丹青 刘方 张泽星

余奇, 刘丹青, 刘方, 张泽星. 湖北宜昌产气页岩氧化溶蚀增渗的地球化学影响[J]. 地质科技通报, 2024, 43(5): 117-130. doi: 10.19509/j.cnki.dzkq.tb20230204
引用本文: 余奇, 刘丹青, 刘方, 张泽星. 湖北宜昌产气页岩氧化溶蚀增渗的地球化学影响[J]. 地质科技通报, 2024, 43(5): 117-130. doi: 10.19509/j.cnki.dzkq.tb20230204
YU Qi, LIU Danqing, LIU Fang, ZHANG Zexing. Geochemical factors affecting oxidation dissolution and permeability enhancement of Yichang gas-producing shale in Hubei Province[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 117-130. doi: 10.19509/j.cnki.dzkq.tb20230204
Citation: YU Qi, LIU Danqing, LIU Fang, ZHANG Zexing. Geochemical factors affecting oxidation dissolution and permeability enhancement of Yichang gas-producing shale in Hubei Province[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 117-130. doi: 10.19509/j.cnki.dzkq.tb20230204

湖北宜昌产气页岩氧化溶蚀增渗的地球化学影响

doi: 10.19509/j.cnki.dzkq.tb20230204
基金项目: 

国家自然科学基金青年基金项目“产气页岩氧化溶蚀增渗过程中黄铁矿的影响机理研究” 41902253

详细信息
    作者简介:

    余奇, E-mail: yuqi@cug.edu.cn

    通讯作者:

    刘丹青, E-mail: liudq@cug.edu.cn

  • 中图分类号: TE37

Geochemical factors affecting oxidation dissolution and permeability enhancement of Yichang gas-producing shale in Hubei Province

More Information
  • 摘要:

    为探究湖北宜昌地区产气页岩氧化溶蚀增渗的地球化学影响因素, 以宜昌地区陡山沱组页岩为研究对象, 选取了H2O2(wB=15%)和Na2S2O8(cB=0.5 mol/L)2种氧化剂开展了氧化溶蚀实验, 探究了不同pH值、温度、地下水水化学离子浓度对氧化溶蚀效果的影响。研究结果表明, Na2S2O8氧化溶蚀效果优于H2O2, H2O2和Na2S2O8在酸性条件下氧化溶蚀效果均优于碱性条件, 碱性环境不利于2种氧化剂的氧化; 升温会促进Na2S2O8和H2O2的热分解, 分别产生H2SO4和O2, 对页岩的氧化溶蚀有积极影响。外源Na+(氯化物)的添加能促进页岩在Na2S2O8和H2O2氧化过程下Ca2+和Mg2+的释放, 增强氧化溶蚀效果; 而外源Ca2+、SO42-的添加, 容易与碳酸盐酸蚀产生的SO42-、Ca2+形成石膏沉淀, 从而引起页岩孔隙堵塞, 降低页岩渗透性; 同时, 外源Mg2+易在弱碱性环境下生成硅酸镁沉淀, 对页岩的氧化溶蚀产生负面影响。建议今后在页岩气氧化压裂开采过程中, 预先调查开采地层的水化学参数, 根据地层温度、pH值和阴阳离子来选择氧化液和开采方式。

     

  • 图 1  湖北宜昌地区地质构造简图[31]

    Nh.南华系; Z.震旦系; ∈.寒武系; O.奥陶系; S.志留系; D.泥盆系; P.二叠系; T.三叠系; J.侏罗系; K.白垩系; E.古近系

    Figure 1.  Sketch map of tectonics in the Yichang area, Hubei Province

    图 2  不同氧化剂处理页岩后质量损失(a)和离子质量浓度(b)随初始pH值的变化

    Figure 2.  Mass loss(a) and ion concentration(b) with initial pH after shale treatment with different oxidants

    图 3  不同氧化剂氧化页岩后质量损失(a)、pH(b)、Ca2+(c)及Mg2+质量浓度(d)随温度的变化

    Figure 3.  Mass loss(a), pH(b), Ca2+ concentration(c), Mg2+ concentration(d) changes with temperature after shale oxidation with different oxidants

    图 4  不同氧化剂氧化页岩后质量损失(a)、Eh值(b)、Fe2+(c)、Ca2+和Mg2+质量浓度(d)随外源Na+质量浓度的变化

    Figure 4.  Mass loss(a), Eh(b), Fe2+ concentration(c), Ca2+ concentration and Mg2+ concentration(d) changes with the exogenous Na+ concentration after shale oxidation with different oxidants

    图 5  不同氧化剂氧化页岩后质量损失(a)、Eh值和pH值(b)、Fe2+(c)、Ca2+和Mg2+质量浓度(d)随外源Ca2+质量浓度的变化

    Figure 5.  Mass loss(a), Eh and pH(b), Fe2+ concentration(c), Ca2+ concentration and Mg2+ concentration(d) changes with the exogenous Ca2+ concentration after shale oxidation with different oxidants

    图 6  不同氧化剂氧化页岩后质量损失(a)、Ca2+和Mg2+质量浓度(b)随外源Mg2+质量浓度的变化

    Figure 6.  Mass loss(a), Ca2+ concentration and Mg2+ concentration(b) changes with the exogenous Mg2+ concentration after shale oxidation with different oxidants

    图 7  不同氧化剂氧化页岩后质量损失(a)、Ca2+和Mg2+质量浓度(b)随外源SO42-质量浓度的变化

    Figure 7.  Mass loss(a), Ca2+ concentration and Mg2+ concentration(b) changes with the exogenous SO42- concentration after shale oxidation with different oxidants

    图 8  原岩及氧化后固体产物XRD分析图

    Q.石英; D.白云石; P.黄铁矿; A.钠长石; I.伊利石; Ch.绿泥石; G.石膏

    Figure 8.  XRD analysis of original rock and oxidized solid products

    图 9  酸性条件下产气页岩氧化溶蚀增渗机理作用图

    Figure 9.  Oxidation dissolution and permeability mechanism action diagram of gas producing shale under acidic conditions

    图 10  碱性条件下产气页岩氧化溶蚀增渗机理作用图

    Figure 10.  Oxidation dissolution and permeability mechanism action diagram of gas producing shale under alkaline conditions

    图 11  高温下产气页岩氧化溶蚀增渗机理作用图(仅考虑分解产物造成的一次反应)

    Figure 11.  Oxidation dissolution and permeability mechanism diagram of gas producing shale at high temperature(only considering the first reaction caused by decomposition products)

    表  1  湘鄂西区海相地层水化学参数统计

    Table  1.   Statistical table of chemical parameters in marine formation water in western Hunan and Hubei Provinces ρB/(mg·L-1)

    储层 井号 Na+ Ca2+ Mg2+ Cl- SO42- HCO3- 矿化度 水型
    震旦系 宜3 1 597.90 568.45 201.98 1 156.11 3 786.30 166.43 7 460.50 SO4-Na
    宜4 1 746.16 534.93 179.88 1 138.98 3 954.10 175.95 7 730.27 SO4-Na
    宜7 1 590.27 538.69 194.54 1 083.88 3 783.06 153.77 7 348.37 SO4-Na
    宜8 1 675.00 550.00 203.00 1 238.00 3 749.00 245.00 7 660.00 SO4-Na
    均值(ρ) 1 652.33 548.02 194.85 1 154.24 3 818.12 185.29 7 549.79 SO4-Na
    下载: 导出CSV

    表  2  实验设计

    Table  2.   Experimental design

    组别 pH值 温度/℃ 阴阳离子 质量浓度ρB
    A 1,2,3,7,9,11 25
    B 25,45,60
    C 25 Na+ 0,0.5ρρ,1.5ρ,2ρ
    Ca2+
    Mg2+
    SO42-
    下载: 导出CSV
  • [1] 邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学, 2022, 47(5): 1517-1533.

    ZOU C N, YANG Z, DONG D Z, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(5): 1517-1533. (in Chinese with English abstract)
    [2] ADMINISTRATION E I. Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States[J]. US Department of Energy, 2013.
    [3] 国家能源局. 中国天然气发展报告[R]. 北京: 石油工业出版社, 2022.

    National Energy Administration. China natural gas development report[R]. Beijing: Petroleum Industry Press, 2022. (in Chinese)
    [4] 王小龙. 扩展有限元法应用于页岩气藏水力压裂数值模拟研究[D]. 合肥: 中国科学技术大学, 2017.

    WANG X L. Numerical simulation of hydraulic fracturing in shale gas reservoirs based on the extended finite element method[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese with English abstract)
    [5] BAIHLY J, ALTMAN R, MALPANI R, et al. Shale gas production decline trend comparison over time and basins[C]//Anon. All Days. Florence, Italy. SPE, 2010.
    [6] CIPOLLA C L, LOLON E P, MAYERHOFER M J. Reservoir modeling and production evaluation in shale-gas reservoirs[C]//Anon. IPTC 2009: International petroleum technology conference. Doha, Qatar: European Association of Geoscientists & Engineers, 2009.
    [7] CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677. doi: 10.1306/08151110188
    [8] YOU L J, KANG Y L, CHEN Q, et al. Prospect of shale gas recovery enhancement by oxidation-induced rock burst[J]. Natural Gas Industry B, 2017, 4(6): 449-456. doi: 10.1016/j.ngib.2017.05.014
    [9] 舒志国, 舒逸, 陈绵琨, 等. 陆相页岩岩相非均质性及储层孔隙发育特征: 以四川盆地自流井组东岳庙段页岩为例[J]. 地质科技通报, 2024, 43(2): 1-15. doi: 10.19509/j.cnki.dzkq.tb20220446

    SHU Z G, SHU Y, CHEN M K, et al. Lithofacies heterogeneity and reservoir pore development characteristics of continental shale: A case study of the Dongyuemiao shale of the Ziliujing Formation in the Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 1-15. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220446
    [10] 刘树根, 王世玉, 孙玮, 等. 四川盆地及其周缘五峰组-龙马溪组黑色页岩特征[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 621-639.

    LIU S G, WANG S Y, SUN W, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(6): 621-639. (in Chinese with English abstract)
    [11] GHANBARI E, DEHGHANPOUR H. Impact of rock fabric on water imbibition and salt diffusion in gas shales[J]. International Journal of Coal Geology, 2015, 138: 55-67. doi: 10.1016/j.coal.2014.11.003
    [12] MAKHANOV K, DEHGHANPOUR H, KURU E. Measuring liquid uptake of organic shales: A workflow to estimate water loss during shut-in periods[C]//Anon. All days. Calgary, Alberta, Canada: SPE, 2013.
    [13] TAKAHASHI S, KOVSCEK A R. Spontaneous countercurrent imbibition and forced displacement characteristics of low-permeability, siliceous shale rocks[J]. Journal of Petroleum Science and Engineering, 2010, 71(1/2): 47-55.
    [14] ENGELDER T, CATHLES L M, BRYNDZIA L T. The fate of residual treatment water in gas shale[J]. Journal of Unconventional Oil and Gas Resources, 2014, 7: 33-48. doi: 10.1016/j.juogr.2014.03.002
    [15] SHANLEY K W, CLUFF R M, ROBINSON J W. Factors controlling prolific gas production from low-permeability sandstone reservoirs: Implications for resource assessment, prospect development, and risk analysis[J]. AAPG Bulletin, 2004, 88(8): 1083-1121. doi: 10.1306/03250403051
    [16] FAN Y, PENG H, CHEN G, et al. Experimental study of the influences of different factors on the acid-rock reaction rate of carbonate rocks[J]. Journal of Energy Storage, 2023, 63: 107064. doi: 10.1016/j.est.2023.107064
    [17] GUO T K, LI Y C, DING Y, et al. Evaluation of acid fracturing treatments in shale formation[J]. Energy & Fuels, 2017, 31(10): 10479-10489.
    [18] ZOU Y S, LI S H, MA X F, et al. Effects of CO2-brine-rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 157-168. doi: 10.1016/j.jngse.2017.11.004
    [19] HAZRA B, VISHAL V, SETHI C, et al. Impact of supercritical CO2 on shale reservoirs and its implication for CO2 sequestration[J]. Energy & Fuels, 2022, 36(17): 9882-9903.
    [20] WANG M W, WU W, CHEN S Y, et al. Experimental evaluation of the rheological properties and influencing factors of gel fracturing fluid mixed with CO2 for shale gas reservoir stimulation[J]. Gels, 2022, 8(9): 527. doi: 10.3390/gels8090527
    [21] ZHOU Y, YOU L J, KANG Y L, et al. Application prospect of oxidative stimulation of organic-rich shale gas reservoir: A case study of Longmaxi Formation in Sichuan Basin[J]. Energy & Fuels, 2022, 36(5): 2530-2541.
    [22] CHENG Q Y, YOU L J, KANG Y L, et al. Oxidative dissolution kinetics of organic-rich shale by hydrogen peroxide(H2O2) and its positive effects on improving fracture conductivity[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103875. doi: 10.1016/j.jngse.2021.103875
    [23] SHAO J X, KANG Y L, YOU L J, et al. Experimental investigation on inorganic scaling induced by the shale reaction with oxidation solution[J]. Journal of Natural Gas Science and Engineering, 2022, 106: 104717. doi: 10.1016/j.jngse.2022.104717
    [24] JEW A D, DUSTIN M K, HARRISON A L, et al. Impact of organics and carbonates on the oxidation and precipitation of iron during hydraulic fracturing of shale[J]. Energy & Fuels, 2017, 31(4): 3643-3658.
    [25] BLAUCH M E, MYERS R R, MOORE T R, et al. Marcellus shale post-frac flowback waters: Where is all the salt coming from and what are the implications?[C]//Anon. All days. Charleston, West Virginia, USA: SPE, 2009.
    [26] 蔡全升, 刘安, 张保民, 等. 宜昌页岩气揭开神秘面纱[J]. 华南地质与矿产, 2018, 34(2): 183-186.

    CAI Q S, LIU A, ZHANG B M, et al. The mystery of Yichang shale gas[J]. Geology and Mineral Resources of South China, 2018, 34(2): 183-186. (in Chinese with English abstract)
    [27] 陈孝红, 张保民, 张国涛, 等. 湖北宜昌地区奥陶系五峰组-志留系龙马溪组获页岩气高产工业气流[J]. 中国地质, 2018, 45(1): 199-200.

    CHEN X H, ZHANG B M, ZHANG G T, et al. High shale gas industry flow obtained from the Ordovician Wufeng Formation and the Silurian Longmaxi Formation of Yichang area, Hubei Province[J]. Geology in China, 2018, 45(1): 199-200. (in Chinese with English abstract)
    [28] 陈孝红, 王传尚, 刘安, 等. 湖北宜昌地区寒武系水井沱组探获页岩气[J]. 中国地质, 2017, 44(1): 188-189.

    CHEN X H, WANG C S, LIU A, et al. The discovery of the shale gas in the Cambrian Shuijingtuo Formation of Yichang area, Hubei Province[J]. Geology in China, 2017, 44(1): 188-189. (in Chinese with English abstract)
    [29] YANG W, HE S, ZHAI G Y, et al. Pore characteristics of the Lower Sinian Doushantuo shale in the Mid-Yangtze Yichang area of China: Insights into a distinct shale gas reservoir in the Neoproterozoic Formation[J]. Journal of Natural Gas Science and Engineering, 2020, 73: 103085. doi: 10.1016/j.jngse.2019.103085
    [30] 刘伟, 段佳文, 赵瑞超, 等. 宜昌长江南岸岩溶地下水中水生动物群落分布特征及其环境响应[J]. 地质科技通报, 2022, 41(5): 273-282. doi: 10.19509/j.cnki.dzkq.2022.0218

    LIU W, DUAN J W, ZHAO R C, et al. Distribution of aquatic fauna in karstic groundwater and its environmental response on the south bank of the Yangtze River in Yichang[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 273-282. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0218
    [31] 杨森. 宜昌地区产气页岩氧化溶蚀增渗机理研究[D]. 武汉: 中国地质大学(武汉), 2021.

    YANG S. Study on the mechanism of oxidative dissolution for permeability enhancement of gas shale in Yichang area[D]. Wuhan: China University of Geosciences(Wuhan), 2021. (in Chinese with English abstract)
    [32] 张君峰, 许浩, 周志, 等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 2019, 40(8): 887-899.

    ZHANG J F, XU H, ZHOU Z, et al. Geological characteristics of shale gas reservoir in Yichang area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-899. (in Chinese with English abstract)
    [33] ZHAO S, PU W F, VARFOLOMEEV M A, et al. Influence of water on thermo-oxidative behavior and kinetic triplets of shale oil during combustion[J]. Fuel, 2022, 318: 123690. doi: 10.1016/j.fuel.2022.123690
    [34] 李小勇, 叶义成, 聂邦亮, 等. 宜昌市城区一带地下热水资源成因类型及成矿模式浅析[J]. 资源环境与工程, 2020, 34(1): 87-91.

    LI X Y, YE Y C, NIE B L, et al. Genetic types and metallogenic models of geothermal water resources in Yichang City[J]. Resources Environment & Engineering, 2020, 34(1): 87-91. (in Chinese with English abstract)
    [35] 楼章华, 朱蓉. 中国南方海相地层水文地质地球化学特征与油气保存条件[J]. 石油与天然气地质, 2006, 27(5): 584-593. doi: 10.3321/j.issn:0253-9985.2006.05.002

    LOU Z H, ZHU R. Hydrogeological and hydrogeochemical characteristics and hydrocarbon preservation conditions in marine strata in southern China[J]. Oil & Gas Geology, 2006, 27(5): 584-593. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-9985.2006.05.002
    [36] 张婉婷. 鄂西黄陵断穹北部区域岩溶水系统特征及隧道工程适宜性探析[D]. 成都: 成都理工大学, 2016.

    ZHANG W T. Karst water system analysis and its suitability with the tunnel engineering in the north of Huangling faulted dome[D]. Chengdu: Chengdu University of Technology, 2016. (in Chinese with English abstract)
    [37] 王玉芳, 翟刚毅, 胡志方, 等. 湖北宜昌震旦系陡山沱组储层特征及复杂体积压裂效果评价[J]. 地质学报, 2022, 96(4): 1447-1459. doi: 10.3969/j.issn.0001-5717.2022.04.021

    WANG Y F, ZHAI G Y, HU Z F, et al. Reservoir characteristics of the Sinian Doushantuo Formation and the effectevaluation of complex fracturing in Yichang, Hubei Province[J]. Acta Geologica Sinica, 2022, 96(4): 1447-1459. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2022.04.021
    [38] 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447.

    ZHAI G Y, BAO S J, WANG Y F, et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei Province[J]. Acta Geoscientica Sinica, 2017, 38(4): 441-447. (in Chinese with English abstract)
    [39] CHEN Q, KANG Y L, YOU L J, et al. Change in composition and pore structure of Longmaxi black shale during oxidative dissolution[J]. International Journal of Coal Geology, 2017, 172: 95-111. doi: 10.1016/j.coal.2017.01.011
    [40] LIU D Q, YI M L, YANG S, et al. Performance and mechanism of the pyrite-kerogen complexes oxidation with H2O2 at low temperature during shale stimulation: An experimental and modeling study[J]. Applied Geochemistry, 2022, 143: 105382. doi: 10.1016/j.apgeochem.2022.105382
    [41] XU P, SHENG M, LIN T Y, et al. Influences of rock microstructure on acid dissolution at a dolomite surface[J]. Geothermics, 2022, 100: 102324. doi: 10.1016/j.geothermics.2021.102324
    [42] YANG S, LIU D Q, LI Y L, et al. Experimental study on the oxidative dissolution of carbonate-rich shale and silicate-rich shale with H2O2, Na2S2O8 and NaClO: Implication to the shale gas recovery with oxidation stimulation[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103207. doi: 10.1016/j.jngse.2020.103207
    [43] 赵进英. 零价铁/过硫酸钠体系产生硫酸根自由基氧化降解氯酚的研究[D]. 辽宁大连: 大连理工大学, 2010.

    ZHAO J Y. Sulfate radical-based oxidation of chlorophenols using zero-valent iron/sodium peroxydisulfate system[D]. Dalian Liaoning: Dalian University of Technology, 2010. (in Chinese with English abstract)
    [44] ROSS G J. Acid dissolution of chlorites: Release of magnesium, iron and aluminum and mode of acid attack[J]. Clays and Clay Minerals, 1969, 17(6): 347-354. doi: 10.1346/CCMN.1969.0170604
    [45] KHALFAOUI A, KACIM S, HAJJAJI M. Sintering mechanism and ceramic phases of an illitic-chloritic raw clay[J]. Journal of the European Ceramic Society, 2006, 26(1/2): 161-167.
    [46] KNAUSS K G, WOLERY T J. Dependence of albite dissolution kinetics on pH and time at 25 ℃ and 70 ℃[J]. Geochimica et Cosmochimica Acta, 1986, 50(11): 2481-2497. doi: 10.1016/0016-7037(86)90031-1
    [47] 信云霞, 张帆, 贾学五, 等. 过氧化氢催化分解研究进展[J]. 石化技术, 2017, 24(6): 50-51.

    XIN Y X, ZHANG F, JIA X W, et al. Research progress of catalysts used for hydrogen peroxide decomposition[J]. Petrochemical Industry Technology, 2017, 24(6): 50-51. (in Chinese with English abstract)
    [48] 蒋慧灵, 臧娜, 钱新明, 等. 过硫酸钠和过硫酸钾的热稳定性分析[J]. 化工学报, 2006, 57(12): 2798-2800. doi: 10.3321/j.issn:0438-1157.2006.12.002

    JIANG H L, ZANG N, QIAN X M, et al. Thermal stability of potassium supersulphate and sodium supersulphate[J]. CIESC Journal, 2006, 57(12): 2798-2800. (in Chinese with English abstract) doi: 10.3321/j.issn:0438-1157.2006.12.002
    [49] 陆绍信, 王廷芬. 不同氧化剂对黄县油页岩氧化的影响[J]. 华东石油学院学报(自然科学版), 1987, 11(1): 78-85.

    LU S X, WANG T F. Effect of different oxidants on the oxidation of Huangxian oil shale[J]. Journal of China University of Petroleum(East China)(Edition of Natural Science), 1987, 11(1): 78-85. (in Chinese with English abstract)
    [50] ILTON E S, EUGSTER H P. Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J]. Geochimica et Cosmochimica Acta, 1989, 53(2): 291-301. doi: 10.1016/0016-7037(89)90381-5
    [51] LI Y L, YANG S, LIU D Q, et al. Experimental study of shale-fluids interaction during oxidative dissolution with hydrogen peroxide, sodium hypochlorite and sodium persulfate[J]. Applied Geochemistry, 2020, 113: 104503. doi: 10.1016/j.apgeochem.2019.104503
    [52] ZHU X X, LI J F, XIE B, et al. Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2, 4-D[J]. Chemical Engineering Journal, 2020, 391: 123605. doi: 10.1016/j.cej.2019.123605
    [53] WANG C Q, SUN R R, HUANG R, et al. A novel strategy for enhancing heterogeneous Fenton degradation of dye wastewater using natural pyrite: Kinetics and mechanism[J]. Chemosphere, 2021, 272: 129883. doi: 10.1016/j.chemosphere.2021.129883
    [54] CHEN S H, XIONG P, ZHAN W, et al. Degradation of ethylthionocarbamate by pyrite-activated persulfate[J]. Minerals Engineering, 2018, 122: 38-43. doi: 10.1016/j.mineng.2018.03.022
    [55] DU M M, KUANG H N, ZHANG Y Q, et al. Enhancement of ball-milling on pyrite/zero-valent iron for persulfate activation on imidacloprid removal in aqueous solution: A mechanistic study[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105647. doi: 10.1016/j.jece.2021.105647
    [56] LIANG X Y, SHENG J J. Comparison of chemical-induced fracturing by Na2S2O8, NaClO, and H2O2 in Marcellus shale[J]. Energy & Fuels, 2020, 34(12): 15905-15919.
    [57] LIANG C J, GUO Y Y, CHIEN Y C, et al. Oxidative degradation of MTBE by pyrite-activated persulfate: Proposed reaction pathways[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8858-8864.
    [58] ZHANG Y Q, TRAN H P, DU X D, et al. Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: A mechanistic study[J]. Chemical Engineering Journal, 2017, 308: 1112-1119. doi: 10.1016/j.cej.2016.09.104
    [59] DO S H, KWON Y J, KONG S H. Effect of metal oxides on the reactivity of persulfate/Fe(Ⅱ)in the remediation of diesel-contaminated soil and sand[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 933-936.
    [60] PENG H, SHANG Q, CHEN R H, et al. Highly efficient oxidative-alkaline-leaching process of vanadium-chromium reducing residue and parameters optimization by response surface methodology[J]. Environmental Technology, 2022, 43(14): 2167-2176. doi: 10.1080/09593330.2020.1869317
    [61] PENG H, GUO J, LIU Z H, et al. Direct advanced oxidation process for chromium(Ⅲ)with sulfate free radicals[J]. SN Applied Sciences, 2018, 1(1): 14.
    [62] NAVIAUX J D, SUBHAS A V, ROLLINS N E, et al. Temperature dependence of calcite dissolution kinetics in seawater[J]. Geochimica et Cosmochimica Acta, 2019, 246: 363-384. doi: 10.1016/j.gca.2018.11.037
    [63] SJÖBERG E L, RICKARD D T. Temperature dependence of calcite dissolution kinetics between 1 and 62 ℃ at pH 2.7 to 8.4 in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1984, 48(3): 485-493. doi: 10.1016/0016-7037(84)90276-X
    [64] 杜佰松, 朱光有, 刘舒飞, 等. 浅析影响方解石生长和溶解的动力学因素及机制[J]. 地学前缘, 2023, 30(4): 335-351.

    DU B S, ZHU G Y, LIU S F, et al. Key factors and mechanisms affecting calcite growth and dissolution: A critical review[J]. Earth Science Frontiers, 2023, 30(4): 335-351. (in Chinese with English abstract)
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  259
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 录用日期:  2023-07-19
  • 修回日期:  2023-07-12

目录

    /

    返回文章
    返回