留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长湖地下水排泄及其携带营养盐通量的季节性变化

吴婧 甘义群 杜尧 孙晓梁 韩鹏

吴婧, 甘义群, 杜尧, 孙晓梁, 韩鹏. 长湖地下水排泄及其携带营养盐通量的季节性变化[J]. 地质科技通报, 2024, 43(5): 206-215. doi: 10.19509/j.cnki.dzkq.tb20230205
引用本文: 吴婧, 甘义群, 杜尧, 孙晓梁, 韩鹏. 长湖地下水排泄及其携带营养盐通量的季节性变化[J]. 地质科技通报, 2024, 43(5): 206-215. doi: 10.19509/j.cnki.dzkq.tb20230205
WU Jing, GAN Yiqun, DU Yao, SUN Xiaoliang, HAN Peng. Seasonal variations in groundwater discharge and associated nutrient fluxes in Changhu Lake[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 206-215. doi: 10.19509/j.cnki.dzkq.tb20230205
Citation: WU Jing, GAN Yiqun, DU Yao, SUN Xiaoliang, HAN Peng. Seasonal variations in groundwater discharge and associated nutrient fluxes in Changhu Lake[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 206-215. doi: 10.19509/j.cnki.dzkq.tb20230205

长湖地下水排泄及其携带营养盐通量的季节性变化

doi: 10.19509/j.cnki.dzkq.tb20230205
基金项目: 

国家自然科学基金项目 U21A2026

详细信息
    作者简介:

    吴婧, E-mail: 2318672050@qq.com

    通讯作者:

    甘义群, E-mail: yiqungan@cug.edu.cn

  • 中图分类号: P641.2;X143

Seasonal variations in groundwater discharge and associated nutrient fluxes in Changhu Lake

More Information
  • 摘要:

    为揭示地下水对湖泊水量和营养盐平衡的贡献及季节性变化, 以长江中游的长湖为研究对象, 通过丰、枯水期野外采样, 结合电导率(EC)、稳定同位素(2H和18O)、水化学元素(Ca2+、Mg2+)和氡(222Rn)同位素对湖底地下水排泄(lacustrine groundwater discharge, 简称LGD)进行了多手段示踪, 并基于222Rn质量平衡模型量化了不同季节的LGD及其携带的营养盐通量。结果显示: 丰、枯水期LGD速率分别为64.52 mm/d和14.95 mm/d, 丰水期显著大于枯水期; 丰、枯水期地下水携带的总氮(TN)输入通量分别为25.68×106 g/d和5.58×106 g/d, 总磷(TP)输入通量分别8.14×106 g/d和0.17×106 g/d。丰、枯水期LGD强度的差异导致了地下水携带TN、TP输入的差异, 丰水期TP的输入量还受该时期农业活动的影响; 丰水期较强的降水和蒸发驱动了更大的LGD强度及其携带的TN、TP通量。本研究可为长湖区域水资源管理和水生态保护提供重要理论依据。

     

  • 图 1  研究区概况图

    a.长湖的地理位置及其主要水系高程图,以及采样点分布,其中箭头指示地表水流方向;b.基于图a中A-B线展开的长湖水文地质剖面图

    Figure 1.  Map of the study area

    图 2  丰、枯水期湖水和地下水中EC(a)、ρ(Ca2+)(b)、ρ(Mg2+)(c)、222Rn活度(d)的对比图

    Figure 2.  Comparison of the contentration of EC(a), Ca2+ (b), Mg2+(c), and 222Rn(d) in surface water and groundwater during wet and dry seasons

    图 3  丰、枯水期湖水中保守指标与222Rn活度的相关性分析

    n为样本量;r为相关系数;p为皮尔森相关系数

    Figure 3.  Correlation analysis between 222Rn activity and conservative tracers in lake water during the wet and dry seasons

    图 4  丰、枯水期各采样位置湖水和地下水(包括井水和孔隙水)的δ18O(a)和δD(b)特征

    Figure 4.  The δ18O(a) and δD(b) characteristics of lake water and groundwater

    图 5  丰、枯水期不同水体的ρ(TN)(a)、ρ(TP)(b)对比

    Figure 5.  Comparison of TN(a) and TP(b) concentrations in different end-member water bodies during the wet and dry seasons

    图 6  研究区2021年1月至2022年11月的降水、蒸发和湖泊水位的月均数据(气象数据源于欧洲中期天气预报中心,水位数据来源于湖北省水利厅; 湖泊水位基准高程为30 m)

    Figure 6.  Monthly average precipitation, evaporation, and lake water level data in the study area from January 2021 to November 2022

    表  1  222Rn质量平衡模型计算的相关参数

    Table  1.   Parameters of the radon mass balance model

    参数 备注
    丰水期 枯水期
    湖水中222Rn的活度Cw/(Bq·m-3) 1 040.65± 334.26 147.16± 66.17 野外测试
    大气中222Rn的活度Catm/(Bq·m-3) 48.70 16.20 野外测试
    地下水中222Rn的活度Cgw/(Bq·m-3) 22 679.92±4 588.15 10 313.653±2 574.29 野外测试
    沉积物培养孔隙水中222Rn的活度Ceq/(Bq·m-3) 38 233.62 17 494.31 式(5)
    上清液中222Rn的活度A0/(Bq·m-3) 3 030 1 497.02 沉积物培养
    大气温度Tatm/℃ 29.64 8.73 野外测试
    湖水温度T/℃ 32.05 11.70 野外测试
    风速μ10/(m·s-1) 3.43±1.95 4.22±1.99 气象站数据
    湖底沉积物孔隙度n 0.48 0.51 实验室测量
    湖泊深度d/m 3.24 2.94 湖北省湖泊志
    沉积物扩散的222Rn通量Fsed/(Bq·m-2·d-1) 26.66±8.45 8.55±3.26 式(8)
    大气弥散的 222Rn通量Fatm/(Bq·m-2·d-1) 879.82±428.55 84.40±45.28 式(9)
    222Rn衰变量Fdec/(Bq·m-2·d-1) 610.28±196.02 78.31±35.75 式(13)
    地下水排泄的222Rn通量Fgw/(Bq·m-2·d-1) 1 463.43±520.77 154.16±57.60 式(3)
    下载: 导出CSV

    表  2  地下水载荷的营养盐通量

    Table  2.   Nutrients fluxes loaded by groundwater discharge

    ρB/(mg·L-1) 通量FB/(g·d-1)
    ρ(TN) ρ(TP) LGD LGD-TN LGD-TP
    丰水期 3.12 0.99 8.23×106 25.68×106 8.14×106
    枯水期 2.92 0.09 1.91×106 5.58×106 0.17×106
    下载: 导出CSV
  • [1] LEWANDOWSKI J, MEINIKMANN K, RUHTZ T, et al. Localization of lacustrine groundwater discharge(LGD) by airborne measurement of thermal infrared radiation[J]. Remote Sensing of Environment, 2013, 138: 119-125. doi: 10.1016/j.rse.2013.07.005
    [2] MEINIKMANN K, NÜTZMANN G, LEWANDOWSKI J. Empirical quantification of lacustrine groundwater discharge: Different methods and their limitations[J]. Proceedings of the International Association of Hydrological Sciences, 2015, 365: 85-90. doi: 10.5194/piahs-365-85-2015
    [3] MEINIKMANN K, LEWANDOWSKI J, NÜTZMANN G. Lacustrine groundwater discharge: Combined determination of volumes and spatial patterns[J]. Journal of Hydrology, 2013, 502: 202-211. doi: 10.1016/j.jhydrol.2013.08.021
    [4] SHI X Y, LUO X, JIAO J J, et al. Dominance of evaporation on lacustrine groundwater discharge to regulate lake nutrient state and algal blooms[J]. Water Research, 2022, 219: 118620. doi: 10.1016/j.watres.2022.118620
    [5] LEWANDOWSKI J, MEINIKMANN K, NÜTZMANN G, et al. Groundwater-the disregarded component in lake water and nutrient budgets: Part 2. Effects of groundwater on nutrients[J]. Hydrological Processes, 2015, 29(13): 2922-2955. doi: 10.1002/hyp.10384
    [6] 王焰新, 杜尧, 邓娅敏, 等. 湖底地下水排泄与湖泊水质演化[J]. 地质科技通报, 2022, 41(1): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0001

    WANG Y X, DU Y, DENG Y M, et al. Lacustrine groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 1-10. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0001
    [7] SUN X L, DU Y, DENG Y M, et al. Spatial patterns and quantification of lacustrine groundwater discharge determined based on222Rn[J]. Water Resources Research, 2022, 58(7): e2022WR031977. doi: 10.1029/2022WR031977
    [8] TECKLENBURG C, BLUME T. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge[J]. Hydrology and Earth System Sciences, 2017, 21(10): 5043-5063. doi: 10.5194/hess-21-5043-2017
    [9] HAGERTHEY S E, CHARLES K W. Spatial variation in groundwater-related resource supply influences freshwater benthic algal assemblage composition[J]. Journal of the North American Benthological Society, 2005, 24(4): 807-819. doi: 10.1899/04-004.1
    [10] LOWRY C S, WALKER J F, HUNT R J, et al. Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor[J]. Water Resources Research, 2007, 43(10): W10408.
    [11] UMWALI E D, KURBAN A, ISABWE A, et al. Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi[J]. Scientific Reports, 2021, 11(1): 17376. doi: 10.1038/s41598-021-96633-9
    [12] CHOMICKI K M, TAYLOR W D, BROWN C J M, et al. Seasonal variation in the influence of environmental drivers on nearshore water quality along an urban northern Lake Ontario shoreline[J]. Journal of Great Lakes Research, 2022, 48(4): 914-926. doi: 10.1016/j.jglr.2022.04.011
    [13] VIRHA R, BISWAS A K, KAKARIA V K, et al. Seasonal variation in physicochemical parameters and heavy metals in water of Upper Lake of Bhopal[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 86(2): 168-174. doi: 10.1007/s00128-010-0172-0
    [14] LEE D R. A device for measuring seepage flux in lakes and estuaries[J]. Limnology and Oceanography, 1977, 22(1): 140-147. doi: 10.4319/lo.1977.22.1.0140
    [15] BLUME T, KRAUSE S, MEINIKMANN K, et al. Upscaling lacustrine groundwater discharge rates by fiber-optic distributed temperature sensing[J]. Water Resources Research, 2013, 49(12): 7929-7944. doi: 10.1002/2012WR013215
    [16] LIAO F, WANG G C, YANG N, et al. Groundwater discharge tracing for a large ice-covered lake in the Tibetan Plateau: Integrated satellite remote sensing data, chemical components and isotopes(D, 18O, and 222Rn)[J]. Journal of Hydrology, 2022, 609: 127741. doi: 10.1016/j.jhydrol.2022.127741
    [17] LUO X, JIAO J J, WANG X S, et al. Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18O/2H and radium isotopes[J]. Journal of Hydrology, 2017, 546: 189-203. doi: 10.1016/j.jhydrol.2017.01.017
    [18] ROSENBERRY D, LEWANDOWSKI J, MEINIKMANN K, et al. Groundwater-the disregarded component in lake water and nutrient budgets: Part 1. Effects of groundwater on hydrology[J]. Hydrological Processes, 2015, 29(13): 2895-2921. doi: 10.1002/hyp.10403
    [19] SCHMIDT A, STRINGER C E, HAFERKORN U, et al. Quantification of groundwater discharge into lakes using radon-222 as naturally occurring tracer[J]. Environmental Geology, 2009, 56(5): 855-863. doi: 10.1007/s00254-008-1186-3
    [20] LIAO F, WANG G C, SHI Z M, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: Approaches using stable isotopes(δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5): 1625-1638. doi: 10.1007/s10040-018-1793-3
    [21] 刘建峰, 张翔, 谢平, 等. 长湖水质演变特征及水环境现状评价[J]. 水资源保护, 2014, 30(4): 18-22.

    LIU J F, ZHANG X, XIE P, et al. Variation of water quality and present water environment assessment of Changhu Lake[J]. Water Resources Protection, 2014, 30(4): 18-22. (in Chinese with English abstract)
    [22] 张振超, 梁莹, 许洁, 等. 高砷地下水中氮循环对砷释放过程的影响[J/OL]. 地球科学: 1-15. [2024-05-23]. http://kns.cnki.net/kcms/detail/42.1874.P.20220531.0924.008.html.

    ZHANG Z C, LIANG Y, XU J, et al. Effet of nitrogen cycling on arsenic release in groundwater with high arsenic content[J]. Journal of Earth Science. 1-15. [2024-05-23]. http://kns.cnki.net/kcms/detail/42.1874.P.20220531.0924.008.html. (in Chinese with English abstract)
    [23] WETZEL R G. Rivers and lakes: Their distribution, origins, and forms[A]//Wetzel R G. Limnology(Third Edition)[C]. San Diego: Academic Press, 2001: 15-42.
    [24] 郭坤, 彭婷, 罗静波, 等. 长湖浮游动物群落结构及其与环境因子的关系[J]. 海洋与湖沼, 2017, 48(1): 40-49.

    GUO K, PENG T, LUO J B, et al. Community structure of zooplankton and the driving physicochemical factors in Changhu Lake[J]. Oceanologia et Limnologia Sinica, 2017, 48(1): 40-49. (in Chinese with English abstract)
    [25] YANG X, ZHOU X H, SHANG G Y, et al. An evaluation on farmland ecological service in Jianghan Plain, China: From farmers' heterogeneous preference perspective[J]. Ecological Indicators, 2022, 136: 108665. doi: 10.1016/j.ecolind.2022.108665
    [26] LIU J, GU W Q, LIU Y W, et al. Dynamic characteristics of net anthropogenic phosphorus input and legacy phosphorus reserves under high human activity: A case study in the Jianghan Plain[J]. Science of the Total Environment, 2022, 836: 155287. doi: 10.1016/j.scitotenv.2022.155287
    [27] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    LIANG X, ZHANG J W, LAN K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0103
    [28] 甘义群, 王焰新, 段艳华, 等. 江汉平原高砷地下水监测场砷的动态变化特征分析[J]. 地学前缘, 2014, 21(4): 37-49.

    GAN Y Q, WANG Y X, DUAN Y H, et al. Dynamic changes of groundwater arsenic concentration in the monitoring field site, Jianghan Plain[J]. Earth Science Frontiers, 2014, 21(4): 37-49. (in Chinese with English abstract)
    [29] SUN X L, DU Y, DENG Y M, et al. Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers(222Rn, 18O, Cl-)[J]. Environmental Geochemistry and Health, 2021, 43(3): 1239-1255. doi: 10.1007/s10653-020-00687-z
    [30] CHENG K H, LUO X, JIAO J J. Two-decade variations of fresh submarine groundwater discharge to Tolo Harbour and their ecological significance by coupled remote sensing and radon-222 model[J]. Water Research, 2020, 178: 115866. doi: 10.1016/j.watres.2020.115866
    [31] YI P, LUO H, CHEN L, et al. Evaluation of groundwater discharge into surface water by using Radon-222 in the source area of the Yellow River, Qinghai-Tibet Plateau[J]. Journal of Environmental Radioactivity, 2018, 192: 257-266. doi: 10.1016/j.jenvrad.2018.07.003
    [32] WEBSTER I T, HANCOCK G J, MURRAY A S. Modelling the effect of salinity on radium desorption from sediments[J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2469-2476. doi: 10.1016/0016-7037(95)00141-7
    [33] GONNEEA M E, MORRIS P J, DULAIOVA H, et al. New perspectives on radium behavior within a subterranean estuary[J]. Marine Chemistry, 2008, 109(3/4): 250-267.
    [34] DIMOVA N T, BURNETT W C, CHANTON J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013, 486: 112-122. doi: 10.1016/j.jhydrol.2013.01.043
    [35] LUO X, KUANG X, JIAO J, et al. Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai-Tibet Plateau: Using 222Rn and stable isotopes[J]. Hydrology and Earth System Sciences, 2018, 22(10): 5579-5598. doi: 10.5194/hess-22-5579-2018
    [36] CORBETT D R, BURNETT W C, CABLE P H, et al. Radon tracing of groundwater input into Par Pond, Savannah River Site[J]. Journal of Hydrology, 1997, 203(1/4): 209-227.
    [37] LUO X, JIAO J J, WANG X S, et al. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China[J]. Journal of Hydrology, 2016, 534: 87-103. doi: 10.1016/j.jhydrol.2015.12.051
    [38] COOK P G, FAVREAU G, DIGHTON J C, et al. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers[J]. Journal of Hydrology, 2003, 277(1/2): 74-88.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  321
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 录用日期:  2023-06-06
  • 修回日期:  2023-06-05

目录

    /

    返回文章
    返回