留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化多壁碳纳米管与L-亮氨酸复配体系中甲烷水合物动力学特征

单文昊 王琳 吴祥恩 杨雨奇 王菊慧子 蔡玉叶

单文昊, 王琳, 吴祥恩, 杨雨奇, 王菊慧子, 蔡玉叶. 功能化多壁碳纳米管与L-亮氨酸复配体系中甲烷水合物动力学特征[J]. 地质科技通报, 2024, 43(5): 161-169. doi: 10.19509/j.cnki.dzkq.tb20230215
引用本文: 单文昊, 王琳, 吴祥恩, 杨雨奇, 王菊慧子, 蔡玉叶. 功能化多壁碳纳米管与L-亮氨酸复配体系中甲烷水合物动力学特征[J]. 地质科技通报, 2024, 43(5): 161-169. doi: 10.19509/j.cnki.dzkq.tb20230215
SHAN Wenhao, WANG Lin, WU Xiang'en, YANG Yuqi, WANG Juhuizi, CAI Yuye. Kinetic characteristics of methane hydrate in functionalized multi-walled carbon nanotubes and L-leucine compounding system[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 161-169. doi: 10.19509/j.cnki.dzkq.tb20230215
Citation: SHAN Wenhao, WANG Lin, WU Xiang'en, YANG Yuqi, WANG Juhuizi, CAI Yuye. Kinetic characteristics of methane hydrate in functionalized multi-walled carbon nanotubes and L-leucine compounding system[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 161-169. doi: 10.19509/j.cnki.dzkq.tb20230215

功能化多壁碳纳米管与L-亮氨酸复配体系中甲烷水合物动力学特征

doi: 10.19509/j.cnki.dzkq.tb20230215
基金项目: 

海南省科技计划三亚崖州湾科技城联合项目 420LH028

国家自然科学基金项目 42266008

国家自然科学基金项目 41906060

海南省2021年国家级大学生创新创业训练计划项目 202111100022

海南省2022年国家级大学生创新创业训练计划项目 202211100008

海南热带海洋学院校级引进人才科研启动项目 RHDRC202109

构造与油气资源教育部重点实验室开放基金项目 TPR-2021-23

详细信息
    作者简介:

    单文昊, E-mail: 1774626776@qq.com

    通讯作者:

    吴祥恩, E-mail: 361724081@qq.com

  • 中图分类号: TE31

Kinetic characteristics of methane hydrate in functionalized multi-walled carbon nanotubes and L-leucine compounding system

More Information
  • 摘要:

    加快天然气水合物形成, 对基于水合物法的天然气储运、气体分离和二氧化碳捕集技术的推动具有重要意义。采用恒温恒容法研究了wB=0.05%功能化(羟基化、羧基化和氨基化)多壁碳纳米管和wB=1.0% L-亮氨酸复配体系中甲烷水合物动力学特征。研究表明, 多壁碳纳米管、羧基化和羟基化多壁碳纳米管与L-亮氨酸的复配, 可使甲烷水合物诱导成核时间大幅缩短至25, 22, 13 min左右, 促进效果与典型促进剂十二烷基硫酸钠相当, 且促进效果优于单一添加剂体系。复配体系甲烷储气质量分数具有良好表现, 可达136~142 mg/g。对甲烷平均吸收速率和瞬时吸收速率的分析表明, 多壁碳纳米管对生长阶段甲烷水合物的生长动力学影响很小。复配体系和L-亮氨酸体系中甲烷水合物的生长具有相似性, 均呈现出甲烷气体吸收速率快速增加到最大值, 然后迅速下降并完成生长的特点。综合分析表明, 多壁碳纳米管和L-亮氨酸的复配对甲烷水合物的成核速率具有协同增强效应, 而生长阶段的进程与速率主要受L-亮氨酸影响。该研究为探索不同类型添加剂在强化甲烷水合物生成动力学上的差异化机理提供了新思路。

     

  • 图 1  甲烷水合物合成装置示意图

    Figure 1.  Schematic diagram of the hydrate synthesis device

    图 2  甲烷水合物生成机理图

    Figure 2.  Schematic diagram of methane hydrate formation

    图 3  甲烷气体瞬时吸收速率求解示意图(以0.05%氨基化碳纳米管和1% L-亮氨酸复配体系为例)

    Figure 3.  Schematic diagram of the gas transient absorption rate solution(0.05% aminated carbon nanotubes and 1% L-leucine compound system were used as an example)

    图 4  不同体系甲烷水合物生成过程随压力(a)和温度(b)变化图

    Figure 4.  Variations in pressure(a) and temperature(b) during methane hydrate generation under different systems

    图 5  不同体系甲烷气体吸收量的变化

    Figure 5.  Variation in methane gas absorption for different systems

    图 6  不同体系甲烷水合物诱导时间与甲烷气体平均吸收速率比较图

    a.不同溶液体系与纯水体系t90的比值;b.不同体系甲烷气体平均吸收速率

    Figure 6.  Comparison between the induction time of methane hydrate in different systems and average absorption rate of methane gas

    图 7  不同体系甲烷气体瞬时吸收速率

    Figure 7.  Instantaneous absorption rates of methane gas for different systems

  • [1] SLOAN E D, KOH C A. Clathrate hydrates of natural gases[M]. Boca Raton, FL: CRC Press, 2008.
    [2] BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215.
    [3] 郁桂刚, 欧文佳, 吴翔, 等. 天然气水合物分解动力学研究进展[J]. 地质科技通报, 2023, 42(3): 175-188. doi: 10.19509/j.cnki.dzkq.tb20210668

    YU G G, OU W J, WU X, et al. Research advances on the dissociation dynamics of natural gas hydrates[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 175-188. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210668
    [4] 宁伏龙, 方翔宇, 李彦龙, 等. 天然气水合物开采储层出砂研究进展与思考[J]. 地质科技通报, 2020, 39(1): 137-148. doi: 10.19509/j.cnki.dzkq.2020.0115

    NING F L, FANG X Y, LI Y L, et al. Research status and perspective on wellbore sand production from hydrate reservoirs[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 137-148. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0115
    [5] VELUSWAMY H P, WONG A J H, BABU P, et al. Rapid methane hydrate formation to develop a cost effective large scale energy storage system[J]. Chemical Engineering Journal, 2016, 290: 161-173. doi: 10.1016/j.cej.2016.01.026
    [6] BABU P, NAMBIAR A, HE T B, et al. A review of clathrate hydrate based desalination to strengthen energy-water nexus[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8093-8107.
    [7] LÜ Y N, WANG S S, SUN C Y, et al. Desalination by forming hydrate from brine in cyclopentane dispersion system[J]. Desalination, 2017, 413: 217-222. doi: 10.1016/j.desal.2017.03.025
    [8] BABU P, LINGA P, KUMAR R, et al. A review of the hydrate based gas separation(HBGS) process for carbon dioxide pre-combustion capture[J]. Energy, 2015, 85: 261-279. doi: 10.1016/j.energy.2015.03.103
    [9] LIU Y, GUO K H, LIANG D Q, et al. Effects of magnetic fields on HCFC-141b refrigerant gas hydrate formation[J]. Science in China Series B(Chemistry), 2003, 46(4): 407-415.
    [10] 巫术胜, 肖睿, 黄冲, 等. 四丁基溴化铵水合物在空调蓄冷中的应用研究[J]. 制冷学报, 2006, 27(6): 48-51.

    WU S S, XIAO R, HUANG C, et al. Research on clathrate hydrate of tetra-n-butylammonium bromide as cold-storage material in air-conditioning[J]. Journal of Refrigeration, 2006, 27(6): 48-51. (in Chinese with English abstract)
    [11] ZHENG J J, CHONG Z R, QURESHI M F, et al. Carbon dioxide sequestration via gas hydrates: A potential pathway toward decarbonization[J]. Energy & Fuels, 2020, 34(9): 10529-10546.
    [12] MIMACHI H, TAKAHASHI M, TAKEYA S, et al. Effect of long-term storage and thermal history on the gas content of natural gas hydrate pellets under ambient pressure[J]. Energy & Fuels, 2015, 29(8): 4827-4834.
    [13] VELUSWAMY H P, KUMAR A, SEO Y, et al. A review of solidified natural gas(SNG) technology for gas storage via clathrate hydrates[J]. Applied Energy, 2018, 216: 262-285.
    [14] 杨亮. 甲烷水合物生成的静态强化技术[D]. 广州: 华南理工大学, 2013.

    YANG L. Static enhancement technology of methane hydrate formation[D]. Guangzhou: South China University of Technology, 2013. (in Chinese with English abstract)
    [15] OHMURA R, KASHIWAZAKI S, SHIOTA S, et al. Structure-I and structure-H hydrate formation using water spraying[J]. Energy & Fuels, 2002, 16(5): 1141-1147.
    [16] 邵子越, 申小冬, 李延霞, 等. 生物胶对二氧化碳水合物生成动力学影响实验研究[J]. 低碳化学与化工, 2023, 48(2): 155-161.

    SHAO Z Y, SHEN X D, LI Y X, et al. Experimental study of influence of biological gums on formation kinetics of carbon dioxide hydrates[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 155-161. (in Chinese with English abstract)
    [17] KUMAR A, BHATTACHARJEE G, KULKARNI B D, et al. Role of surfactants in promoting gas hydrate formation[J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12217-12232.
    [18] WANG F, LIU G Q, MENG H L, et al. Improved methane hydrate formation and dissociation with nanosphere-based fixed surfactants As promoters[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2107-2113.
    [19] LO C, ZHANG J S, SOMASUNDARAN P, et al. Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy[J]. Journal of Colloid and Interface Science, 2012, 376(1): 173-176.
    [20] BHATTACHARJEE G, LINGA P. Amino acids as kinetic promoters for gas hydrate applications: A mini review[J]. Energy & Fuels, 2021, 35(9): 7553-7571.
    [21] VELUSWAMY H P, KUMAR A, KUMAR R, et al. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application[J]. Applied Energy, 2017, 188: 190-199.
    [22] LIU Y, CHEN B Y, CHEN Y L, et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage[J]. Energy Technology, 2015, 3(8): 815-819.
    [23] SHANKER PANDEY J, JOULJAMAL DAAS Y, PAUL KARCZ A, et al. Methane hydrate formation behavior in the presence of selected amino acids[J]. Journal of Physics(Conference Series), 2020, 1580(1): 012003.
    [24] VELUSWAMY H P, LEE P Y, PREMASINGHE K, et al. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6145-6154.
    [25] PRASAD P S R, SAI KIRAN B. Clathrate hydrates of greenhouse gases in the presence of natural amino acids: Storage, transportation and separation applications[J]. Scientific Reports, 2018, 8(1): 8560.
    [26] NASHED O, PARTOON B, LAL B, et al. Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 452-465.
    [27] RAHMATI-ABKENAR M, MANTEGHIAN M, PAHLAVANZADEH H. Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles[J]. Chemical Engineering Research and Design, 2017, 120: 325-332.
    [28] PAHLAVANZADEH H, REZAEI S, KHANLARKHANI M, et al. Kinetic study of methane hydrate formation in the presence of copper nanoparticles and CTAB[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 803-810.
    [29] ALIABADI M, RASOOLZADEH A, ESMAEILZADEH F, et al. Experimental study of using CuO nanoparticles as a methane hydrate promoter[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1518-1522.
    [30] ABDI-KHANGHAH M, ADELIZADEH M, NASERZADEH Z, et al. Methane hydrate formation in the presence of ZnO nanoparticle and SDS: Application to transportation and storage[J]. Journal of Natural Gas Science and Engineering, 2018, 54: 120-130.
    [31] CHARI V D, SHARMA D V S G K, PRASAD P S R, et al. Methane hydrates formation and dissociation in nano silica suspension[J]. Journal of Natural Gas Science and Engineering, 2013, 11: 7-11.
    [32] PARK S S, LEE S B, KIM N J. Effect of multi-walled carbon nanotubes on methane hydrate formation[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(4): 551-555.
    [33] GOVINDARAJ V, MECH D, PANDEY G, et al. Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 810-818.
    [34] KIM N J, PARK S S, KIM H T, et al. A comparative study on the enhanced formation of methane hydrate using CM-95 and CM-100 MWCNTs[J]. International Communications in Heat and Mass Transfer, 2011, 38(1): 31-36.
    [35] WANG F, LUO S J, FU S F, et al. Methane hydrate formation with surfactants fixed on the surface of polystyrene nanospheres[J]. Journal of Materials Chemistry A, 2015, 3(16): 8316-8323.
    [36] KAKATI H, MANDAL A, LAIK S. Promoting effect of Al2O3/ZnO-based nanofluids stabilized by SDS surfactant on CH4++C2H6+C3H8 hydrate formation[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 357-368.
    [37] WANG F, MENG H L, GUO G, et al. Methane hydrate formation promoted by-SO3--coated graphene oxide anosheets[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6597-6604.
    [38] 张雪艳, 周诗岽, 姬浩洋, 等. 氧化石墨烯/纳米石墨颗粒与SDS复配对CO2水合物生成特性的影响[J]. 天然气化工(C1化学与化工), 2021, 46(2): 53-58.

    ZHANG X Y, ZHOU S D, JI H Y, et al. Effect of GO/GN and SDS compound system on formation characteristics of CO2 hydrate[J]. Natural Gas Chemical Industry(C1 Chemistry and Chemical Engineering), 2021, 46(2): 53-58. (in Chinese with English abstract)
    [39] PENG D Y, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.
    [40] CASCO M E, SILVESTRE-ALBERO J, RAMÍREZ-CUESTA A J, et al. Methane hydrate formation in confined nanospace can surpass nature[J]. Nature Communications, 2015, 6: 6432.
    [41] DENNING S, MAJID A A A, LUCERO J M, et al. Methane hydrate growth promoted by microporous zeolitic imidazolate frameworks ZIF-8 and ZIF-67 for enhanced methane storage[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(27): 9001-9010.
    [42] NGUYEN N N, NGUYEN A V. Hydrophobic effect on gas hydrate formation in the presence of additives[J]. Energy & Fuels, 2017, 31: 10311-10323.
  • 加载中
图(7)
计量
  • 文章访问数:  236
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 录用日期:  2023-07-13
  • 修回日期:  2023-07-06

目录

    /

    返回文章
    返回