留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于采灌均衡模拟的砂岩热储合理采灌井距计算方法

段晓飞 康凤新 吴晓华 王明珠 杨亚宾 战静华 陈京鹏

段晓飞, 康凤新, 吴晓华, 王明珠, 杨亚宾, 战静华, 陈京鹏. 基于采灌均衡模拟的砂岩热储合理采灌井距计算方法[J]. 地质科技通报, 2024, 43(5): 170-180. doi: 10.19509/j.cnki.dzkq.tb20230268
引用本文: 段晓飞, 康凤新, 吴晓华, 王明珠, 杨亚宾, 战静华, 陈京鹏. 基于采灌均衡模拟的砂岩热储合理采灌井距计算方法[J]. 地质科技通报, 2024, 43(5): 170-180. doi: 10.19509/j.cnki.dzkq.tb20230268
DUAN Xiaofei, KANG Fengxin, WU Xiaohua, WANG Mingzhu, YANG Yabin, ZHAN Jinghua, CHEN Jingpeng. A methodology for determining the optimal well spacing in sandstone geothermal reservoirs through production-reinjection equilibrium simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 170-180. doi: 10.19509/j.cnki.dzkq.tb20230268
Citation: DUAN Xiaofei, KANG Fengxin, WU Xiaohua, WANG Mingzhu, YANG Yabin, ZHAN Jinghua, CHEN Jingpeng. A methodology for determining the optimal well spacing in sandstone geothermal reservoirs through production-reinjection equilibrium simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 170-180. doi: 10.19509/j.cnki.dzkq.tb20230268

基于采灌均衡模拟的砂岩热储合理采灌井距计算方法

doi: 10.19509/j.cnki.dzkq.tb20230268
基金项目: 

国家自然科学基金项目 42072331

国家自然科学基金项目 U1906209

泰山学者工程专项经费 tstp20230626

山东省部省合作地质勘查项目 鲁勘字[2020]44[2021]49号

山东省地质矿产勘查开发局2022年科技引领项目 鲁地字[2022]15号

详细信息
    作者简介:

    段晓飞, E-mail: changtingsongbie@163.com

    通讯作者:

    康凤新, E-mail: kangfengxin@126.com

  • 中图分类号: P314

A methodology for determining the optimal well spacing in sandstone geothermal reservoirs through production-reinjection equilibrium simulation

More Information
  • 摘要:

    为实现地热能可持续开发利用的目标, 需要明确不同采灌条件下合理的采灌井间距。为此, 以鲁北馆陶组热储为研究对象, 建立了层状热储开发的概念模型及数学模型, 采用COMSOL Multiphysics多场耦合模拟软件建立了地热对井采灌井距计算器。通过参数拟合及模拟结果对比, 验证了模型的准确性; 进而以软件APP编译功能为基础, 以普通用户使用为导向, 简化相关参数输入, 建立了地热采灌井距计算APP。为适应实际生产需求, 计算了不同采灌量条件下对应的合理采灌井距。计算结果表明: 鲁北地区馆陶组热储采灌量分别为40, 60, 80, 100 m3/h时, 不发生热突破的合理采灌井距分别为290, 330, 360, 390 m。研究表明: (1)在鲁北层状传导型砂岩热储地区, 对概念模型进行简化处理后, 数值模拟计算结果可靠, 可以在该地区建立合理采灌井距计算APP; (2)水热数值模拟是合理采灌井距计算的有力手段, 能够确定开采量、回灌量、回灌温度、采灌井距等地热开发利用工程的关键参数, 有利于实现地热资源可持续开发利用。

     

  • 图 1  鲁北地质构造图(据文献[15]修改)

    a.鲁西北平原; b.济阳坳陷; c.临清坳陷; d.沧县隆起; e.内黄凸起; f.埕宁凸起; g.黄骅坳陷; h.冀中坳陷; i.渤中坳陷; j.辽河坳陷

    Figure 1.  Geological structure map of northern Shandong

    图 2  地热资源形成概念模型图(地层代号见正文)

    Figure 2.  Conceptual model diagram of geothermal resource formation

    图 3  概念模型示意图

    Qout为开采量,m3/h;Qin为回灌量,m3/h;Tout为井口温度,℃;Tin为回灌温度,℃;Ttop为当地恒温带温度,℃;ΔT为温度梯度,℃/m;φ为有效孔隙度; Keff为热储层导热率, W/mK; 下同

    Figure 3.  Conceptual model diagram

    图 4  模型的初始及边界条件

    qc为大地热流密度, mW/m2

    Figure 4.  Initial and boundary conditions of the model

    图 5  矩形周期函数

    Figure 5.  Rectangular periodic function

    图 6  温度测井及参数拟合图

    Figure 6.  Temperature logging and parameter fitting diagram

    图 7  对井采灌第100 a热储层温度分布(a)及历年井口温度动态变化图(b)(采灌井距180 m,采灌量60 m3/h)

    Figure 7.  Temperature distribution of thermal reservoir(a) and the dynamic variation of wellhead water temperature in the 100th year(b) (production-reinjection well spacing 180 m, production and reinjection volume of 60 m3/h)

    图 8  合理采灌井距APP界面示意图

    Figure 8.  Interface diagram of the appropriate production and reinjection well spacing APP

    图 9  不同采灌量条件下开采温度计算

    Figure 9.  Mining temperature calculation under different reinjection quantities and reinjection temperatures

    图 10  不同采灌量条件下第100 a热储层温度分布

    Figure 10.  Temperature distribution of thermal reservoir in the 100th year under the different reinjection quantities

    表  1  德州市水文家园回灌井地层层序

    Table  1.   Stratigraphic sequence of reinjection well at the hydrological site in Dezhou

    地层 深度/m 厚度/m 岩性
    第四系(Q) 0 260 黏土、粉砂岩、中细砂岩
    新近系 明化镇组(N2m) 260 890 泥岩、中细砂岩
    馆陶组(N1g) 上段 1 150 169 泥岩与细砂岩互层
    下段 1 319 217 砂砾岩
    古近系 东营组(E3d) 1 536(未揭穿) 8.5 泥岩
    下载: 导出CSV

    表  2  模型参数取值列表

    Table  2.   List of model parameter values

    参数 取值 描述 参数 取值 描述
    din/mm 177.8 回灌井井径 Qin/(m3·h-1) 60 回灌量
    dpro/mm 177.8 开采井井径 Qout/(m3·h-1) 60 开采量
    L/m 180 采灌井间距 Hm/m -80 水位标高
    qc/(W·m-2) 0.062 9 大地热流密度 cp/(J·kg-1·K-1) 909 热储层比热容
    htop/m 1 319 储层顶板埋深 kc/(W·m-1·K-1) 2.1 储层热导率
    H/m 217 热储层厚度 ρden/(kg·m-3) 2 000 热储层密度
    Kk/10-3 μm2 1 000 储层渗透率 Th/℃ 35 回灌尾水温度
    kr 0.22 孔隙率 Tout/℃ 54.4 井口温度
    t/a 100 计算时长 t1/Ms 1 输出时间间隔
    下载: 导出CSV

    表  3  德州市水文家园模拟结果对比表

    Table  3.   Simulation results comparison table at the hydrological site in Dezhou

    模型 开采量Qout/(m3·h-1) 回灌量Qin/(m3·h-1) 回灌温度Tin/℃ 井距/m 第100 a井口温度Tout/℃
    XU等[12] 60 60 35 180 46.6
    本文模型 60 60 35 180 47.3
    XU等[12] 40 40 35 180 48.2
    本文模型 40 40 35 180 48.6
    下载: 导出CSV
  • [1] 康凤新, 赵季初, 黄迅, 等. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力[J]. 地球科学, 2023, 48(3): 1080-1092.

    KANG F X, ZHAO J C, HUANG X, et al. Heat accumulation mechanism and resources potential of the karst geothermal reservoir in Liangcun buried uplift of Linqing Depression[J]. Earth Science, 2023, 48(3): 1080-1092. (in Chinese with English abstract)
    [2] 窦斌, 肖鹏, 郑君, 等. 二氧化碳爆破致裂激发干热岩储层作用效果[J]. 地质科技通报, 2022, 41(5): 150-159. doi: 10.19509/j.cnki.dzkq.2022.0194

    DOU B, XIAO P, ZHENG J, et al. Effect of stimulation in hot dry rock reservoirs from carbon dioxide blasting-induced cracking[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 150-159. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0194
    [3] KANG F X, ZHAO J C, TAN Z R, et al. Geothermal power generation potential in the eastern Linqing Depression[J]. Acta Geologica Sinica-English Edition, 2021, 95(6): 1870-1881. doi: 10.1111/1755-6724.14877
    [4] KANG F X. Sustainable development of geothermal resources in China[C]//Anon. Proceedings world geothermal congress. Bali, Indonesia: [s. n.], 2010.
    [5] ZHENG X, SI G, XIA B. The sustainable development of geothermal resources in China[J]. Transactions - Geothermal Resources Council, 2005, 29: 321-323.
    [6] 杨询昌, 康凤新, 王学鹏, 等. 砂岩孔隙热储地温场水化学场特征及地热水富集机理: 鲁北馆陶组热储典型案例[J]. 地质学报, 2019, 93(3): 738-750.

    YANG X C, KANG F X, WANG X P, et al. Hydrochemical features of geothermal reservoir geotemperature field in sandstone porosity and enrichment mechanism of geothermal water: A case study of geothermal reservoir of Guantao Formation in the Lubei[J]. Acta Geologica Sinica, 2019, 93(3): 738-750. (in Chinese with English abstract)
    [7] 吴立进, 赵季初, 李艾银, 等. 鲁北坳陷区地热资源开发利用关键性问题研究[J]. 地质与勘探, 2016, 52(2): 300-306.

    WU L J, ZHAO J C, LI A Y, et al. Key issues of geothermal resource exploitation and utilization in the depression area of northern Shandong Province[J]. Geology and Exploration, 2016, 52(2): 300-306. (in Chinese with English abstract)
    [8] 党书生, 马致远, 郑磊. 咸阳地区地热采灌井最佳井距分析[J]. 地下水, 2016, 38(1): 56-58.

    DANG S S, MA Z Y, ZHENG L. An optimization of the distance between geothermal fluid in Xiangyang area[J]. Ground Water, 2016, 38(1): 56-58. (in Chinese with English abstract)
    [9] 刘帅, 冯守涛, 刘志涛, 等. 层状热储地热井权益保护半径计算探讨[J]. 中国地质调查, 2020, 7(3): 104-108.

    LIU S, FENG S T, LIU Z T, et al. Discussion on the calculation of the rights protection radius of the geothermal well for stratified thermal reservoir[J]. Geological Survey of China, 2020, 7(3): 104-108. (in Chinese with English abstract)
    [10] 朱家玲, 朱晓明, 雷海燕. 地热回灌井间压差补偿对回灌效率影响的分析[J]. 太阳能学报, 2012, 33(1): 56-62.

    ZHU J L, ZHU X M, LEI H Y. Analysis of impact of pressure compensation between geothermal wells on reinjection effeciency[J]. Acta Energiae Solaris Sinica, 2012, 33(1): 56-62. (in Chinese with English abstract)
    [11] 段忠丰, 李福来, 巩亮, 等. 基于水热耦合模拟的油气区地热开发井网布局[J]. 天然气工业, 2020, 40(10): 156-162.

    DUAN Z F, LI F L, GONG L, et al. Geo-thermal development well spacing patterns based on hydrothermal coupled modeling in oil-gas bearing areas[J]. Natural Gas Industry, 2020, 40(10): 156-162. (in Chinese with English abstract)
    [12] XU T F, ZHAO Y A, ZHAO J C, et al. Heat extraction performance and optimization for a doublet-well geothermal system in Dezhou, China[J]. Energy Exploration & Exploitation, 2022, 40(2): 619-638.
    [13] 刘帅, 刘志涛, 冯守涛, 等. 采暖尾水回灌对砂岩热储地温场的影响: 以鲁北地区为例[J]. 地质论评, 2021, 67(5): 1507-1520.

    LIU S, LIU Z T, FENG S T, et al. Effect of heating tail water recharge on geothermal field of sandstone heat storage: A case study in northern Shandong Province[J]. Geological Review, 2021, 67(5): 1507-1520. (in Chinese with English abstract)
    [14] 陈墨香. 华北地热[M]. 北京: 科学出版社, 1988.

    CHEN M X. Geothermal resources in North China[M]. Beijing: Science Press, 1988. (in Chinese)
    [15] 邱楠生, 许威, 左银辉, 等. 渤海湾盆地中-新生代岩石圈热结构与热-流变学演化[J]. 地学前缘, 2017, 24(3): 13-26.

    QIU N S, XU W, ZUO Y H, et al. Evolution of Meso-Cenozoic thermal structure and thermal-rheological structure of the lithosphere in the Bohai Bay Basin, eastern North China Craton[J]. Earth Science Frontiers, 2017, 24(3): 13-26. (in Chinese with English abstract)
    [16] 宋晨, 杨兵, 张超谟, 等. 渤中19-6孔店组砂砾岩孔隙结构和渗透率估算模型[J]. 地质科技通报, 2023, 42(1): 274-285. doi: 10.19509/j.cnki.dzkq.2022.0093

    SONG C, YANG B, ZHANG C M, et al. Investigation of pore structure and permeability estimation models of Kongdian Formation glutenites in the Bozhong 19-6 gasfield[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 274-285. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0093
    [17] 冯守涛, 王成明, 杨亚宾, 等. 砂岩热储回灌对储层影响评价: 以鲁西北坳陷地热区为例[J]. 地质学报, 2019, 93(增刊1): 158-167.

    FENG S T, WANG C M, YANG Y B, et al. Inpact assessment of reinjection on sand stong geothermal reservoir: A case study of Northwest Shandong Depression[J]. Acta Geologica Sinica, 2019, 93(S1): 158-167. (in Chinese with English abstract)
    [18] 秦耀军, 张平平. 山东省砂岩热储地热资源开发利用模式探讨[J]. 山东国土资源, 2018, 34(10): 93-98.

    QIN Y J, ZHANG P P. Development and utilization of geothermal resources in the middle and deep layers of Shandong Province[J]. Shandong Land and Resources, 2018, 34(10): 93-98. (in Chinese with English abstract)
    [19] 邱楠生, 胡圣标, 何丽娟. 沉积盆地地热学[M]. 山东青岛: 中国石油大学出版社, 2019.

    QIU N S, HU S B, HE L J. Geothermics in sedimentary basins[M]. Qingdao Shandong: China University of Petroleum Press, 2019. (in Chinese)
    [20] 陈宗元, 祖甘霖, 牛智伟, 等. COMSOL Multiphysics在物理化学教学中的应用[J]. 大学化学, 2023, 38(5): 308-314.

    CHEN Z Y, ZU G L, NIU Z W, et al. Application of COMSOL Multiphysics in the teaching of physical chemistry[J]. University Chemistry, 2023, 38(5): 308-314. (in Chinese with English abstract)
    [21] 钟家伦. 空心通道与多孔介质圆管通道传热的理论分析和数值模拟[D]. 上海: 上海工程技术大学, 2017.

    ZHONG J L. Analytical and numerical analysis of heat transfer in hollow channeland circular channel filled with porous medium[D]. Shanghai: Shanghai University of Engineering Science, 2017. (in Chinese with English abstract)
    [22] 朱喜, 张庆莲, 刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技情报, 2016, 35(4): 172-177.

    ZHU X, ZHANG Q L, LIU Y G. Evaluation of the geothermal resources in the plain of west Shandong Province[J]. Geological Science and Technology Information, 2016, 35(4): 172-177. (in Chinese with English abstract)
    [23] 张保建. 鲁西北地区地下热水的水文地球化学特征及形成条件研究[D]. 北京: 中国地质大学(北京), 2011.

    ZHANG B J. Hydrogeochemical characteristics and formation conditions of the geothermal water in northwestern Shandong Province[D]. Beijing: China University of Geosciences(Beijing), 2011. (in Chinese with English abstract)
    [24] KANG F X, JIN M G, QIN P R. Sustainable yield of a karst aquifer system: A case study of Jinan springs in northern China[J]. Hydrogeology Journal, 2011, 19(4): 851-863.
    [25] 康凤新, 隋海波, 郑婷婷. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例[J]. 地质学报, 2020, 94(5): 1606-1624.

    KANG F X, SUI H B, ZHENG T T. Heat accumulation and water enrichment mechanism of piedmont karstic geothermal reservoirs: A case study of northern Jinan[J]. Acta Geologica Sinica, 2020, 94(5): 1606-1624. (in Chinese with English abstract)
    [26] 施亦做, 王社教, 肖红平, 等. 基于三维地质建模的松辽盆地北部地温场模拟[J]. 天然气工业, 2022, 42(4): 46-53.

    SHI Y Z, WANG S J, XIAO H P, et al. 3D GeoModeller-based simulation of the geothermal field in the northern Songliao Basin[J]. Natural Gas Industry, 2022, 42(4): 46-53. (in Chinese with English abstract)
    [27] 郑小康, 杨志兵. 岩溶含水层饱和-非饱和流动与污染物运移数值模拟[J]. 地质科技通报, 2022, 41(5): 357-366. doi: 10.19509/j.cnki.dzkq.2022.0211

    ZHENG X K, YANG Z B. Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 357-366. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0211
    [28] 高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073

    GAO Z H, ZHAO R R, CHENG J M. Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: A case study of Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0073
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  354
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 录用日期:  2023-11-17
  • 修回日期:  2023-11-14

目录

    /

    返回文章
    返回