Application of comprehensive geophysics in uranium exploration in the Hetaoba area of Duolun County, Inner Mongolia
-
摘要:
核桃坝地区铀成矿条件优越,在该区东部已取得较好的找矿成果,西部尚未取得找矿突破。研究区铀矿化受断裂构造、破碎带控制明显,查明该区断裂构造格架和构造破碎、蚀变带的分布,推断成矿有利区,为进一步挖掘该地区的铀成矿潜力提供地球物理资料。通过音频大地电磁测量、土壤氡测量和地面高精度磁测3种物探方法的联合应用,圈定了土壤氡异常;查明断裂F13北西部断裂呈现NE向和NW向"田"字格排列,断裂F12南东部断裂呈现NE向。断裂F13、F12夹持部位断裂呈现近SN向和NW向;推断构造蚀变、破碎带6处。结合该区铀矿化特征,构造蚀变、破碎带S1、S2、S3、S4,处于断裂交汇、夹持部位,规模较大,且周围分布多个土壤氡异常,异常幅值可达35 000 Bq/m3,为成矿有利地段。经钻探验证,钻孔ZKH24深部发现了构造蚀变、破碎带和富厚铀矿体,后续在S2构造蚀变带内发现了多个工业铀矿孔,并发现了矿体较好的钻孔ZKH7-1,落实了铀矿产地,说明此3种物探方法联合应用在该地区铀矿找矿工作中具有较好的效果,可在该类型铀矿勘查工作中推广应用。
Abstract:Objective The Hetaoba area in Inner Mongolia has superior uranium metallogenic conditions.Grea tore-prospecting results have been achieved in the eastern part of the study area.However, breakthrough has not been made in the western area. Uranium mineralization is significantly controlled by faults and fractured zones. To identify the distributions of fault framework, structural fracture and alteration zones, and further to infer the favorable metallogenesis areas, geophysical data are provided to explore the uranium metallogenic potential.
Methods Through the comprehensive applications of three geophysical methods, including audiomagnetotelluric surveys, soil radon measurements, and ground high-precision magnetic measurements, soil radon anomalies are delineated in the study area. The northwest fault F13 shows a northeast- and northwest-trending with a Chinese word "Tian" grid shape, while the southeast fault F12 presents a northeast-trending grid shape. The faults of F13 and F12 present nearly north-south and northwest trendings in the pinched zones.There are six structural alterated and fractured zones to be inferred.
Results Based on the characteristics of uranium mineralization, it is inferred that the structural alteration and fracture zones of S1, S2, S3 and S4 are located at the intersection and pinched zone of faults, with a large scale. Multiple soil radon anomalies are distributed with an anomaly amplitude up to 35 000 Bq/m3, which are the favorable areas for metallogenesis.
Conclusion After verification of the drilling results, the structural alteration, fracture zones and thick uranium ore bodies are discovered in the deep of borehole ZKH24. Many industrial uranium ore holes are discovered in the S2 structural alteration zone. Borehole ZKH7-1 has good ore findings, confirming the origin place of the uranium ore. The study indicates that the comprehensive application of the three geophysical methods has effective results in uranium ore exploration and can be promoted to uranium ore prospecting.
-
表 1 岩石物性参数测量结果
Table 1. The rocks physical properties measurement results
岩性 组数 电阻率/(Ω·m) 组数 磁化率/10-5SI 变化范围 几何平均值 变化范围 几何平均值 流纹岩 30 183~3 900 945 31 5~25 12.5 凝灰岩 31 266~3 326 902 30 4~32 13.2 流纹斑岩 31 1 451~5 659 2 544 34 28~1430 316.8 凝灰岩(蚀变、破碎) 30 159~967 380 流纹岩(蚀变) 30 208~1 530 603.2 -
[1] 王国建. 沽源-红山子多金属成矿带燕山成矿阶段主要控矿因素研究新进展和存在的主要问题[J]. 世界有色金属, 2021(15): 59-60.WANG G J. New progress and existing problems in the study of main ore controlling factors in the Yanshanian metallogenic stage of Guyuan-Hongshanzi polymetallic metallogenic belt[J]. World Nonferrous Metals, 2021(15): 59-60. (in Chinese with English abstract) [2] 薛伟, 彭云彪, 李小伟, 等. 沽源-红山子铀成矿带核桃坝铀矿床矿相学和成矿年代学研究[J]. 岩石学报, 2019, 35(4): 1085-1094.XUE W, PENG Y B, LI X W, et al. Study on the mineragraphy and geochronology of Hetaoba uranium deposit in Guyuan-Hongshanzi uranium metallogenic belt[J]. Acta Petrologica Sinica, 2019, 35(4): 1085-1094. (in Chinese with English abstract) [3] 刘小刚, 孙国胜. 多伦火山盆地核桃坝地区控矿因素及找矿方向[J]. 世界有色金属, 2018(1): 92-93.LIU X G, SUN G S. Ore controlling factors and prospecting direction in the walnut dam area of the Duolun volcanic basin[J]. World Nonferrous Metals, 2018(1): 92-93. (in Chinese with English abstract) [4] 蒋孝君, 剡彭兵, 薛伟, 等. 内蒙古核桃坝地区流纹斑岩的地球化学特征及与铀富集的关系[J]. 现代地质, 2017, 31(2): 225-233.JIANG X J, YAN P B, XUE W, et al. Geochemical characteristics of rhyolite porphyry and relationship between the rock and enriched uranium in Hetaoba, Inner Mongolia[J]. Geoscience, 2017, 31(2): 225-233. (in Chinese with English abstract) [5] 蒋孝君. 内蒙古核桃坝地区铅锌与铀矿的期次关系探讨[J]. 地质论评, 2021, 67(1): 97-98.JIANG X J. Discussion on the relationship between lead zinc and uranium deposits in Hetaoba area, Inner Mongolia[J]. Geological Review, 2021, 67(1): 97-98. (in Chinese with English abstract) [6] YANG X L, LI B, PENG C S, et al. Application of a wide-field electromagnetic method to shale gas exploration in South China[J]. Applied Geophysics, 2017, 14(3): 441-448. doi: 10.1007/s11770-017-0633-x [7] 赵岩岩, 吴昌雄, 石文杰, 等. 鄂东南矿集区铜绿山-铜山铜铁金矿床三维地质建模与深部预测[J]. 地质科技通报, 2023: 42(1): 112-125. doi: 10.19509/j.cnki.dzkq.2022.0095ZHAO Y Y, WU C X, SHI W J, et al. Three-dimensional (3D) geological modeling and deep mineral targeting of the Tonglüshan-Tongshan Cu-Fe-Au deposit in southeastern Hubei Province[J]. Bulletin of Geological Science and Technology, 2023: 42(1): 112-125. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0095 [8] 周立国, 王延浩, 张单乐, 等. 日龙沟锡-多金属成矿区综合物探找矿方法应用研究[J]. 地球物理学进展, 2009, 24(6): 2255-2260.ZHOU L G, WANG Y H, ZHANG D L, et al. A study on application of integrated geophysical prospecting methods to the Rilonggou Sn-polymetallic metallogenic area[J]. Progress in Geophysics, 2009, 24(6): 2255-2260. (in Chinese with English abstract) [9] 陈后扬, 李帝铨, 凌帆, 等. 朱溪钨铜矿的广域电磁法深部探测[J]. 中国有色金属学报, 2022, 32(10): 3227-3243.CHEN H Y, LI D S, LING F, et al. Deep exploration of wide field electromagnetic method in Zhuxi W-Cu deposit[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3227-3243. (in Chinese with English abstract) [10] 路拓, 刘盛东, 王勃, 等. 综合矿井物探技术在含水断层探测中的应用[J]. 地球物理学进展, 2015, 30(3): 1371-1375.LU T, LIU S D, WANG B, et al. Application of integrated mining geophysical method in detection of water-bearing faults[J]. Progress in Geophysics, 2015, 30(3): 1371-1375. (in Chinese with English abstract) [11] 赵东东, 张宝松, 宗全兵, 等. 综合物探方法在地铁孤石探测中的应用研究[J]. 地球物理学进展, 2022, 37(3): 1360-1370.ZHAO D D, ZHANG B S, ZONG Q B, et al. Application of integrated geophysical method to boulder in subway shield zone[J]. Progress in Geophysics, 2022, 37(3): 1360-1370. (in Chinese with English abstract) [12] 高才坤, 肖长安, 杜爱明, 等. 综合物探方法在滇池补水工程中的应用[J]. 地球物理学进展, 2011, 26(4): 1440-1447.GAO C K, XIAO C A, DU A M, et al. Application of integrated geophysical methods on Dianchi water supplement project[J]. Progress in Geophysics, 2011, 26(4): 1440-1447. (in Chinese with English abstract) [13] 黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3): 1352-1359.HUANG Y M, ZHANG X F, XIE S P, et al. Application of integrated geophysical method to karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32 (3): 1352-1359. (in Chinese with English abstract) [14] 李丛, 张平, 代磊, 等. 综合物探在中深层地热勘查的应用研究[J]. 地球物理学进展, 2021, 36(2): 611-617.LI C, ZHANG P, DAI L, et al. Research on the application of comprehensive geophysical prospecting in middle-deep geothermal exploration[J]. Progress in Geophysics, 2021, 36(2): 611-617. (in Chinese with English abstract) [15] 林华颖, 裴鹏, 邹行, 等. 贵州省毕节市米底河地热特征及形成机理[J]. 地质科技通报, 2023, 42(3): 281-288. doi: 10.19509/j.cnki.dzkq.tb20210675LIN H Y, PEI P, ZOU H, et al. Geothermal characteristics and formation mechanism of the Medi River in Bijie City, Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 281-288. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210675 [16] ZHANG B M, DAI S K, JIANG Q Y, et al. Time-domain denoising of time-frequency electromagnetic data[J]. Applied Geophysics, 2019, 16(3): 378-393. doi: 10.1007/s11770-019-0772-3 [17] LI J J, YAN J B, HUANG X Y, et al. Precision of meshfree methods and application to forword modeling of two-dimensional electromagnetic sources[J]. Applied Geophysics, 2015, 12(4): 503-515. doi: 10.1007/s11770-015-0511-3 [18] LIN C H, TAN H D, DONG T, et al. Three-demensional conjugate gradients inversion of magnetotelluric sounding data[J]. Applied Geophysics, 2008, 5(4): 314-321. doi: 10.1007/s11770-008-0043-1 [19] JIANG F, WU J S, WANG J L. Study of joint inversion of gravity and magnetic data for two-layer model[J]. Applied Geophysics, 2008, 5(4): 331-339. doi: 10.1007/s11770-008-0042-2 [20] WANG K P, TAN H D, WANG T. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. Applied Geophysics, 2017, 14(2): 279-290. doi: 10.1007/s11770-017-0615-z [21] XIONG J, ZHANG T. Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data[J]. Applied Geophysics, 2015, 12(2): 127-136. doi: 10.1007/s11770-015-0486-0