留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压条件对页岩吸附水赋存特征的影响: 以重庆涪陵礁石坝地区页岩储层为例

周文宇 王小明 陈文文 党正 贺曼秋 郑爱维 刘莉

周文宇, 王小明, 陈文文, 党正, 贺曼秋, 郑爱维, 刘莉. 高压条件对页岩吸附水赋存特征的影响: 以重庆涪陵礁石坝地区页岩储层为例[J]. 地质科技通报, 2024, 43(5): 95-104. doi: 10.19509/j.cnki.dzkq.tb20230316
引用本文: 周文宇, 王小明, 陈文文, 党正, 贺曼秋, 郑爱维, 刘莉. 高压条件对页岩吸附水赋存特征的影响: 以重庆涪陵礁石坝地区页岩储层为例[J]. 地质科技通报, 2024, 43(5): 95-104. doi: 10.19509/j.cnki.dzkq.tb20230316
ZHOU Wenyu, WANG Xiaoming, CHEN Wenwen, DANG Zheng, HE Manqiu, ZHENG Aiwei, LIU Li. Influence of high-pressure conditions on the occurrence characteristics of shale adsorbed water: A case study of a shale reservoir in the Jiaoshiba area, Fuling, Chongqing[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 95-104. doi: 10.19509/j.cnki.dzkq.tb20230316
Citation: ZHOU Wenyu, WANG Xiaoming, CHEN Wenwen, DANG Zheng, HE Manqiu, ZHENG Aiwei, LIU Li. Influence of high-pressure conditions on the occurrence characteristics of shale adsorbed water: A case study of a shale reservoir in the Jiaoshiba area, Fuling, Chongqing[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 95-104. doi: 10.19509/j.cnki.dzkq.tb20230316

高压条件对页岩吸附水赋存特征的影响: 以重庆涪陵礁石坝地区页岩储层为例

doi: 10.19509/j.cnki.dzkq.tb20230316
基金项目: 

国家自然科学基金项目 41972184

国家自然科学基金项目 42262022

地震科技星火计划项目“地震地磁垂直强度极化异常空间特征研究” XH20062

地震科技星火计划项目“基于脉冲幅度和电流定位的地磁垂直强度极化异常研究” XH23029A

详细信息
    作者简介:

    周文宇, E-mail: 1521789743@qq.com

    通讯作者:

    王小明, E-mail: sunwxm@cug.edu.cn

  • 中图分类号: P618.13

Influence of high-pressure conditions on the occurrence characteristics of shale adsorbed water: A case study of a shale reservoir in the Jiaoshiba area, Fuling, Chongqing

More Information
  • 摘要:

    页岩普遍含水, 明确页岩吸附水的赋存特征对提高页岩气的排采效果具有重要意义。以重庆涪陵焦石坝地区JY11-4井和JY41-5井页岩岩心为研究对象, 通过自主设计页岩冷冻氮吸附实验和核磁共振实验流程, 分析了高压条件对页岩吸附水赋存特征的影响。结果表明: (1)常压条件下, 由"称重法"计算得到的样品单位质量吸附水体积平均值0.017 3 mL/g。赋存于微孔和介孔中的水体积总占比(平均值90.94%)明显高于赋存在大孔中的水体积占比(平均值9.06%), 这可能与相对压力较小时, 水分子无法占据页岩所有孔隙中的吸附位点, 大部分水分子凝聚在微孔和介孔中, 只有较少的水分子进入大孔中, 以及富黏土页岩在水吸附过程中小孔隙被水分子"充填堵塞"有关。(2)30 MPa饱和水压力条件下, 由"称重法"计算得到的样品单位质量吸附的水体积平均值为0.021 6 mL/g。赋存于微孔和介孔中水体积总占比(平均值40.26%)低于赋存在大孔中的水体积占比(平均值59.74%), 这可能与相对压力显著升高时, 水分子在毛细管力的作用下占据微孔和介孔内表面的吸附位点后, 仍能占据更多大孔内表面的吸附位点有关。(3)相比于常压, 高压条件会导致页岩单位质量吸附的水体积增加(实验中约增加25%)、大孔中的水体积占比高于微孔和介孔中的水体积总占比。(4)注水压裂时, 储层相对压力显著升高, 压裂液在毛细管力的作用下可能进入之前在原始储层压力下未能进入的大孔中来"缓解"原始页岩储层的"非饱和状态"。压裂完成后, 储层周围压力逐渐被释放, 原先进入页岩吸附孔隙中的压裂液可能难以克服其孔喉处的毛管阻力而难以返排。

     

  • 图 1  采点位置及岩心照片

    a.重庆市辖区边界;b.样品岩心照片;c.矿区边界及采点位置;d.目标井岩心柱状图及样品编号

    Figure 1.  Location of sample points and core photos

    图 2  样品孔体积增量随孔隙直径变化曲线

    Figure 2.  Variation in sample pore volume increment with respect to pore diameter

    图 3  样品水分布曲线

    Figure 3.  Water distribution curve of shale sample

    图 4  样品核磁共振(NMR)T2

    Figure 4.  Nuclear magnetic resonance T2 spectrum of the sample

    表  1  样品冷冻氮吸附结果参数

    Table  1.   Results of sample frozen nitrogen adsorption

    样品号 原始样品 冷冻吸附样品
    BET比表面积/(m2·g-1) BJH总孔体积/(cm3·g-1) 干燥质量/mg 平衡质量/mg 单位质量吸附水体积/(mL·g-1) BJH总孔体积/(cm3·g-1) 根据BJH差值计算得到的单位质量吸附水体积/(mL·g-1) 不同孔径范围内水体积占比/% 不同孔径范围内赋存的单位质量水体积/(mL·g-1)
    [0, 50] nm >50 nm [0, 50] nm >50 nm
    JY-1 20.960 1 0.023 4 2.571 7 2.619 5 0.018 6 0.021 9 0.002 5 85.42 14.58 0.002 1 0.000 4
    JY-2 17.171 8 0.018 5 2.326 0 2.368 6 0.018 3 0.014 0 0.004 5 93.11 6.89 0.004 2 0.000 3
    JY-3 14.817 5 0.017 6 2.378 6 2.420 9 0.017 8 0.013 9 0.003 7 92.16 7.84 0.003 4 0.000 3
    JY-4 14.689 6 0.019 8 2.361 3 2.399 8 0.016 3 0.018 5 0.001 3 93.08 6.92 0.001 2 0.000 1
    JY-5 19.027 4 0.021 5 2.338 2 2.378 2 0.017 1 0.019 4 0.002 2 87.62 12.38 0.001 9 0.000 3
    JY-6 16.050 3 0.020 2 2.347 8 2.385 1 0.015 9 0.013 4 0.006 8 94.26 5.74 0.006 4 0.000 4
    注:测试单位为中国地质大学(武汉)构造与油气资源教育部重点实验室
    下载: 导出CSV

    表  2  样品吸附水赋存参数

    Table  2.   Occurrence parameters of sample adsorbed water

    样品号 核磁孔隙度/% 干燥质量/g 饱水质量/g 进入样品的水体积/mL 单位质量吸附的水体积/(mL·g-1) 不同孔径范围内赋存的水体积占比/% 不同孔径范围内赋存的单位质量水体积/(mL·g-1)
    [0, 50] nm >50 nm [0, 50] nm >50 nm
    JY-1 6.46 60.52 62.19 1.67 0.022 8 39.42 60.58 0.009 0 0.013 8
    JY-2 7.29 60.03 61.99 1.96 0.026 9 35.42 64.58 0.009 5 0.017 4
    JY-3 5.61 62.33 63.98 1.65 0.021 9 40.66 59.34 0.008 9 0.013 0
    JY-4 3.07 65.61 67.12 1.51 0.020 1 40.02 59.98 0.008 0 0.012 1
    JY-5 4.09 62.05 63.31 1.26 0.018 5 42.86 57.14 0.007 9 0.010 6
    JY-6 2.89 66.12 67.44 1.32 0.019 6 43.15 56.75 0.008 4 0.011 2
    注:测试单位为太原理工大学煤与煤系气地质山西省重点实验室;表中“单位质量吸附的水体积”和“不同孔径范围内赋存的水体积占比”采用剔除T2>10 ms段后的数据计算所得
    下载: 导出CSV
  • [1] 刘义生, 金吉能, 潘仁芳, 等. 渝东南盆缘转换带五峰组-龙马溪组常压页岩气保存条件评价[J]. 地质科技通报, 2023, 42(1): 253-263. doi: 10.19509/j.cnki.dzkq.tb20210768

    LIU Y S, JIN J N, PAN R F, et al. Preservation condition evaluation of normal pressure shale gas in the Wufeng and Longmaxi formations of basin margin transition zone, Southeast Chongqing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 253-263. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210768
    [2] NICOT J P, SCANLON B R. Water use for shale-gas production in texas, U.S. [J]. Environmental Science & Technology, 2012, 46(6): 3580-3586.
    [3] SINGH H. A critical review of water uptake by shales[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 751-766. doi: 10.1016/j.jngse.2016.07.003
    [4] VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.
    [5] CHEN G, ZHANG J, LU S, et al. Adsorption behavior of hydrocarbon on illite[J]. Energy & Fuels, 2016, 30(11): 9114-9121.
    [6] ZHAI Z Q, WANG X Q, JIN X, et al. Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths[J]. Energy & Fuels, 2014, 28(12): 7467-7473.
    [7] WANG S B, SONG Z G, CAO T T, et al. The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2013, 44: 112-119.
    [8] LI K W, HORNE R N. Experimental study of gas slippage in two-phase flow[J]. SPE Reservoir Evaluation & Engineering, 2004, 7(6): 409-415.
    [9] CHEN Z Y, SONG Y, LI Z, et al. The occurrence characteristics and removal mechanism of residual water in marine shales: A case study of Wufeng-Longmaxi shale in Changning-Weiyuan area, Sichuan Basin[J]. Fuel, 2019, 253: 1056-1070.
    [10] YEW C, CHENEVERT M, WANG C L, et al. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling Engineering, 1990, 5(4): 311-316.
    [11] 周文宇, 王小明, 曾凡桂, 等. 鸡西盆地主力煤层水可动性及其孔渗控制[J]. 地质科技通报, 2021, 40(3): 124-131. doi: 10.19509/j.cnki.dzkq.2021.0305

    ZHOU W Y, WANG X M, ZENG F G, et al. Water mobility of the main coal seam and its control of porosity and permeability in Jixi Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 124-131. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0305
    [12] 卢振东, 刘成林, 臧起彪, 等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用: 以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3): 300-310. doi: 10.19509/j.cnki.dzkq.2021.0256

    LU Z D, LIU C L, ZANG Q B, et al. Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone: A case study of the Heshui area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 300-310. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0256
    [13] YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J]. Fuel, 2010, 89(7): 1371-1380.
    [14] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
    [15] GE H K, YANG L, SHEN Y H, et al. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids[J]. Petroleum Science, 2015, 12(4): 636-650.
    [16] 姚艳斌, 刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京: 地质出版社, 2013.

    YAO Y B, LIU D M. Advanced quantitative characterization and comprehensive evaluation model of coalbed methane reservoirs[M]. Beijing: Geological Publishing House, 2013. (in Chinese)
    [17] KENYON W. Nuclear magnetic resonance as a petrophysical measurement[J]. International Journal of Radiation Applications & Instrumentation(Part E. Nuclear Geophysics), 1992, 6(2): 153-171.
    [18] 李军, 金武军, 王亮, 等. 页岩气岩心核磁共振T2与孔径尺寸定量关系[J]. 测井技术, 2016, 40(4): 460-464.

    LI J, JIN W J, WANG L, et al. Quantitative relationship between NMR T2 and pore size of shale gas reservoir from core experiment[J]. Well Logging Technology, 2016, 40(4): 460-464. (in Chinese with English abstract)
    [19] 党伟, 张金川, 王凤琴, 等. 富有机质页岩-水蒸气吸附热力学与动力学特性: 以鄂尔多斯盆地二叠系山西组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 173-185.

    DANG W, ZHANG J C, WANG F Q, et al. Thermodynamics and kinetics of water vapor adsorption onto shale: A case study of the Permian Shanxi Formation, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(1): 173-185. (in Chinese with English abstract)
    [20] 张砚, 惠栋, 张鉴, 等. 四川盆地海相页岩水蒸气吸附特征及其主控因素: 以川南地区下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(6): 1431-1444.

    ZHANG Y, HUI D, ZHANG J, et al. Characteristics and main controlling factors of water vapor adsorption in marine shale: A case study of the Lower Silurian Longmaxi shales in southern Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(6): 1431-1444. (in Chinese with English abstract)
    [21] FENG D, LI X F, WANG X Z, et al. Water adsorption and its impact on the pore structure characteristics of shale clay[J]. Applied Clay Science, 2018, 155: 126-138.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  94
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 录用日期:  2023-07-19
  • 修回日期:  2023-07-14

目录

    /

    返回文章
    返回