留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连云港市滨海湿地土壤有机碳分布特征及其影响因素

张烨 姜雪 唐连松 王俊友 马银超 王同同 彭雨晴

张烨, 姜雪, 唐连松, 王俊友, 马银超, 王同同, 彭雨晴. 连云港市滨海湿地土壤有机碳分布特征及其影响因素[J]. 地质科技通报, 2024, 43(5): 249-258. doi: 10.19509/j.cnki.dzkq.tb20230318
引用本文: 张烨, 姜雪, 唐连松, 王俊友, 马银超, 王同同, 彭雨晴. 连云港市滨海湿地土壤有机碳分布特征及其影响因素[J]. 地质科技通报, 2024, 43(5): 249-258. doi: 10.19509/j.cnki.dzkq.tb20230318
ZHANG Ye, JIANG Xue, TANG Liansong, WANG Junyou, MA Yinchao, WANG Tongtong, PENG Yuqing. Distribution characteristics and influences of soil organic carbon in the coastal wetland of Lianyungang[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 249-258. doi: 10.19509/j.cnki.dzkq.tb20230318
Citation: ZHANG Ye, JIANG Xue, TANG Liansong, WANG Junyou, MA Yinchao, WANG Tongtong, PENG Yuqing. Distribution characteristics and influences of soil organic carbon in the coastal wetland of Lianyungang[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 249-258. doi: 10.19509/j.cnki.dzkq.tb20230318

连云港市滨海湿地土壤有机碳分布特征及其影响因素

doi: 10.19509/j.cnki.dzkq.tb20230318
基金项目: 

江苏省地质调查研究院项目 JSTCC2200214614

江苏省地质调查研究院项目 JSZC-G2021-412

详细信息
    作者简介:

    张烨, E-mail: 459654991@qq.com

    通讯作者:

    姜雪, E-mail: jiangxue@cug.edu.cn

  • 中图分类号: X13;X173

Distribution characteristics and influences of soil organic carbon in the coastal wetland of Lianyungang

More Information
  • 摘要:

    滨海湿地作为一种独特的湿地类型,海陆水文循环和生物地球化学循环复杂,有着巨大的固碳潜力,其土壤有机碳的研究对于了解碳循环、气候调节和生态系统健康等方面具有重要意义。在连云港市滨海湿地选取了光滩、碱蓬、互花米草和芦苇4种典型植物类型作为研究对象,分析了不同植物群落土壤有机碳含量的分布特征,并利用Pearson相关性分析、冗余分析(RDA)和结构方程(SEM)等统计方法,探讨了植物群落特征和土壤物理化学性质对土壤有机碳的调控作用,重点解析了滨海湿地环境因子与土壤有机碳含量间的关系。结果表明:在水平方向上,不同植物群落土壤有机碳含量大小依次为芦苇植被带((7.79±4.72) g/kg)>互花米草植被带((7.42±3.14) g/kg)>碱蓬植被带((4.95±3.40) g/kg)>光滩带((3.66±1.90) g/kg)。在垂向上,0~50 cm深度内的土壤有机碳含量的分布呈现随深度增加而降低的趋势;此外土壤有机碳含量和土壤物理化学性质、植物群落特征之间相关性显著,冗余分析结果显示在不同的植物类型中土壤有机碳含量与土壤容重呈负相关,与土壤含水率、植物株高、基径、盖度、地上生物量和地下生物量均呈正相关。结构方程模型表明,土壤含水率是影响滨海湿地土壤有机碳含量的最关键因素。以上研究可为更好地理解滨海湿地的生态系统结构和功能并为全球气候变化相关保护政策的制定提供相关的数据支持。

     

  • 图 1  研究区采样点示意图

    Figure 1.  Schematic diagram of the sampling sites in the study area

    图 2  不同覆被类型土壤有机碳的分布特征

    不同字母表示不同覆被类型间w(SOC)差异显著(p<0.05)

    Figure 2.  Distribution of soil organic carbon in different coastline types

    图 3  不同植物群落w(SOC)随土壤深度的变化

    Figure 3.  Changes in soil organic carbon content with depth in different plant communities

    图 4  不同植物群落土壤有机碳密度分布情况

    Figure 4.  Distribution of soil organic carbon density under different cover types

    图 5  w(SOC)与环境因子间的相关性分析

    红色表示正相关,蓝色表示负相关;“** ”表示p=0.01水平的显著性;“*** ”表示p=0.001水平的显著性,椭圆的集中度表示相关性的强度;SWC.土壤含水率;BD.容重;EC.电导率;AGB.地上生物量;BGB.地下生物量;下同

    Figure 5.  Correlation analysis between soil organic carbon content and influencing factors

    图 6  土壤有机碳与土壤理化性质、植物群落特征的冗余分析

    空心箭头连线代表环境因子,2个箭头夹角余弦值与箭头长度的乘积代表环境因子与w(SOC)的相关性大小,该值为正时表示为正相关关系,反之为负相关关系,其绝对值越大相关性也就越大。RDA1,RDA2为排序轴,解释环境变量和响应变量之间关系的主成分,百分比指每个排序轴解释的方差比例

    Figure 6.  Redundancy analysis of soil organic carbon, soil physicochemical properties and plant community characteristics

    图 7  土壤物理化学性质、植物群落特征和w(SOC)间拟合的结构方程模型

    χ2=50.572; DF=18;χ2/DF=1.383;GFI=0.943; AGFI=0.886; RMSEA=0.101。红色表示负相关,蓝色表示正相关,箭头粗细表示相关性大小,其中χ2/DF为卡方自由度比值;GFI为拟合优度参数;AGFI为调整后拟合优度参数;RMSEA为近似误差均方根;e1~e7为残差变量

    Figure 7.  Structural equation model fitting between soil physicochemical properties, plant community characteristics and soil organic carbon content

    表  1  研究区w(SOC)和土壤物理化学性质特征统计(n=180)

    Table  1.   Statistics of the soil organic carbon content and soil physicochemical properties in the study area(n=180)

    变量 均值 标准差 变异系数/%
    含水率/% 52.55 21.35 40.62
    容重/(g·cm-3) 1.01 0.28 28.06
    电导率/(mS·cm-1) 4.84 2.36 48.79
    pH值 8.55 0.29 3.41
    w(SOC)/(g·kg-1) 6.34 3.50 55.26
    下载: 导出CSV

    表  2  w(SOC)与植物群落特征统计

    Table  2.   Statistics of the soil organic carbon content and plant community characteristics

    植物群落 w(SOC)/(g·kg-1) 株高/cm 基径/mm 盖度/% 地上生物量/(g·m-2) 地下生物量/(g·m-2)
    互花米草 7.42±3.14 76.54 8.25 60.30 2 510.74 3 428.95
    碱蓬 4.95±3.40 47.33 5.89 35.91 3 132.43 7 870.05
    芦苇 7.79±4.72 165.36 6.71 90.00 4 643.25 14 474.90
    下载: 导出CSV

    表  3  植被带深度0~50 cm地下生物量(BGB)及w(SOC)分布情况

    Table  3.   Distribution of below-ground biomass(BGB) and soil organic carbon(SOC) content in the 0-50 cm vegetation zone

    土壤深度/cm 互花米草 碱蓬 芦苇
    BGB/(g·m-2) w(SOC)/(g·kg-1) BGB/(g·m-2) w(SOC)/(g·kg-1) BGB/(g·m-2) w(SOC)/(g·kg-1)
    0~10 1 350.40 8.28±2.67 4 040.42 5.97±4.31 5 629.15 15.16±7.62
    10~20 789.38 8.15±2.88 1 469.21 4.74±3.30 1 286.37 6.79±1.57
    20~30 575.82 6.98±3.10 1 086.37 4.49±3.35 1 297.37 6.07±0.46
    30~40 435.59 7.12±3.72 1 168.01 4.41±2.69 801.93 5.03±0.77
    40~50 277.76 6.21±3.26 1 244.05 5.13±3.65 152.56 5.89±0.35
    下载: 导出CSV
  • [1] 张美琪, 陈波, 赵敏. 贵州省湿地碳储量与碳中和潜力分析[J]. 地质科技通报, 2023, 42(2): 315-326. doi: 10.19509/j.cnki.dzkq.tb20220358

    ZHANG M Q, CHEN B, ZHAO M. Analysis of the carbon stock and carbon neutral potential of wetlands in Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 315-326. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220358
    [2] MACREADIE P I, COSTA M D P, ATWOOD T B, et al. Blue carbon as a natural climate solution[J]. Nature Reviews Earth & Environment, 2021, 2(12): 826-839.
    [3] 周金戈, 覃国铭, 张靖凡, 等. 中国盐沼湿地蓝碳碳汇研究进展[J]. 热带亚热带植物学报, 2022, 30(6): 765-781.

    ZHOU J G, QIN G M, ZHANG J F, et al. Research progress of blue carbon sink in Chinese salt marshes[J]. Journal of Tropical and Subtropical Botany, 2022, 30(6): 765-781. (in Chinese with English abstract)
    [4] 姜勇, 庄秋丽, 梁文举. 农田生态系统土壤有机碳库及其影响因子[J]. 生态学杂志, 2007, 26(2): 278-285.

    JIANG Y, ZHUANG Q L, LIANG W J. Soil organic carbon pool and its affecting factors in farmland ecosystem[J]. Chinese Journal of Ecology, 2007, 26(2): 278-285. (in Chinese with English abstract)
    [5] DE PAUL OBADE V, LAL R. Using meta-analyses to assess pedo-variability under different land uses and soil management in central Ohio, USA[J]. Geoderma, 2014, 232: 56-68.
    [6] 么秀颖, 闫丹丹, 李静泰, 等. 盐城大丰麋鹿自然保护区滨海湿地土壤有机碳分布特征[J]. 海洋湖沼通报, 2022, 44(3): 101-108.

    YAO X Y, YAN D D, LI J T, et al. Distribution characteristics of soil organic carbon in the coastal wetland of Dafeng Milu national nature reserve, Yancheng[J]. Transactions of Oceanology and Limnology, 2022, 44(3): 101-108. (in Chinese with English abstract)
    [7] 严格, 葛振鸣, 张利权. 崇明东滩湿地不同盐沼植物群落土壤碳储量分布[J]. 应用生态学报, 2014, 25(1): 85-91.

    YAN G, GE Z M, ZHANG L Q. Distribution of soil carbon storage in different saltmarsh plant communities in Chongming Dongtan wetland[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 85-91. (in Chinese with English abstract)
    [8] 訾园园, 郗敏, 孔范龙, 等. 胶州湾滨海湿地土壤有机碳时空分布及储量[J]. 应用生态学报, 2016, 27(7): 2075-2083.

    ZI Y Y, XI M, KONG F L, et al. Temporal and spatial distribution of soil organic carbon and its storage in the coastal wetlands of Jiaozhou Bay, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2075-2083. (in Chinese with English abstract)
    [9] 邵学新, 杨文英, 吴明, 等. 杭州湾滨海湿地土壤有机碳含量及其分布格局[J]. 应用生态学报, 2011, 22(3): 658-664.

    SHAO X X, YANG W Y, WU M, et al. Soil organic carbon content and its distribution pattern in Hangzhou Bay coastal wetlands[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 658-664. (in Chinese with English abstract)
    [10] 汪艳, 谭季, 谭凤凤, 等. 盐分增强对河口淡水潮汐湿地土壤活性碳组分和碳获取酶活性的影响[J]. 环境科学学报, 2023, 43(5): 459-470.

    WANG Y, TAN J, TAN F F, et al. Impact of salinization on soil labile carbon fractions and carbon-acquiring enzyme activities in a tidal freshwater wetland[J]. Acta Scientiae Circumstantiae, 2023, 43(5): 459-470. (in Chinese with English abstract)
    [11] BERNAL B, MITSCH W J. Comparing carbon sequestration in temperate freshwater wetland communities[J]. Global Change Biology, 2012, 18(5): 1636-1647.
    [12] KAUR B, GUPTA S R, SINGH G. Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India[J]. Applied Soil Ecology, 2000, 15(3): 283-294.
    [13] VALÉRY L, BOUCHARD V, LEFEUVRE J C. Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh[J]. Wetlands, 2004, 24(2): 268-276.
    [14] 高建华, 杨桂山, 欧维新. 互花米草引种对苏北潮滩湿地TOC、TN和TP分布的影响[J]. 地理研究, 2007, 26(4): 799-808.

    GAO J H, YANG G S, OU W X. The influence after introduction of Spartina alterniflora on the distribution of TOC, TN and TP in the national Yancheng rare birds nature reserve, Jiangsu Province, China[J]. Geographical Research, 2007, 26(4): 799-808. (in Chinese with English abstract)
    [15] 王建步, 张杰, 马毅, 等. 基于GF-1 WFV的黄河口湿地植被碳储量估算研究[J]. 海洋科学进展, 2019, 37(1): 75-83.

    WANG J B, ZHANG J, MA Y, et al. Estimation of vegetation carbon storage in the Yellow River Estuary wetland based on GF-1 WFV satellite image[J]. Advances in Marine Science, 2019, 37(1): 75-83. (in Chinese with English abstract)
    [16] 张明亮. 滨海盐沼湿地退化机制及生态修复技术研究进展[J]. 大连海洋大学学报, 2022, 37(4): 539-549.

    ZHANG M L. Research advancement on degradation mechanism and ecological restoration technology of coastal salt-marsh: A review[J]. Journal of Dalian Ocean University, 2022, 37(4): 539-549. (in Chinese with English abstract)
    [17] 刘文光, 李云芝, 刘惠芬, 等. 烟台高新区沿海土壤理化分析[J]. 安徽农业科学, 2017, 45(14): 91-93.

    LIU W G, LI Y Z, LIU H F, et al. Analysis on physical and chemical properties of coastal soil in Yantai Hi-Tech zone[J]. Journal of Anhui Agricultural Sciences, 2017, 45(14): 91-93. (in Chinese with English abstract)
    [18] WANG Q D, SONG J M, CAO L, et al. Distribution and storage of soil organic carbon in a coastal wetland under the pressure of human activities[J]. Journal of Soils and Sediments, 2017, 17(1): 11-22.
    [19] GUAN Y N, BAI J H, WANG J J, et al. Effects of groundwater tables and salinity levels on soil organic carbon and total nitrogen accumulation in coastal wetlands with different plant cover types in a Chinese Estuary[J]. Ecological Indicators, 2021, 121: 106969.
    [20] 全桂香, 严金龙. 不同生态带下盐城滩涂湿地土壤颗粒和矿物结合有机碳特征[J]. 地球与环境, 2010, 38(2): 214-218.

    QUAN G X, YAN J L. Organic carbon characteristics of the particulate organic carbon and mineral-associated organic carbon in Yancheng soils in different ecological zones[J]. Earth and Environment, 2010, 38(2): 214-218. (in Chinese with English abstract)
    [21] ZHOU L, YIN S, AN S, et al. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China[J]. Clean-Soil, Air, Water, 2015, 43(4): 569-576.
    [22] 金宝石, 闫鸿远, 张林海, 等. 中国滨海互花米草湿地土壤有机碳时空变化及其影响因素[J]. 生态环境学报, 2016, 25(12): 2021-2027.

    JIN B S, YAN H Y, ZHANG L H, et al. Spatial-temporal variations and theirs influence factors of soil organic carbon under the spartina alterniflora wetland in China[J]. Ecology and Environmental Sciences, 2016, 25(12): 2021-2027. (in Chinese with English abstract)
    [23] 李健成, 吴伊婧, 江彬彬, 等. 不同植被类型对福建三沙湾潮滩有机碳埋藏的影响[J]. 海洋科学, 2021, 45(6): 13-21.

    LI J C, WU Y J, JIANG B B, et al. Effects of different vegetation types on organic carbon burial in tidal flats of the Sansha Bay, Fujian Province[J]. Marine Sciences, 2021, 45(6): 13-21. (in Chinese with English abstract)
    [24] ZHAO Q, BAI J, LIU P, et al. Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands[J]. Clean-Soil, Air, Water, 2015, 43(3): 441-445.
    [25] SPIVAK A C, SANDERMAN J, BOWEN J L, et al. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems[J]. Nature Geoscience, 2019, 12(9): 685-692.
    [26] KAŠTOVSKÁ E, ŠANTR ĈKOVÁ H. Fate and dynamics of recently fixed C in pasture plant-soil system under field conditions[J]. Plant and Soil, 2007, 300(1): 61-69.
    [27] XIONG Y M, LIAO B W, WANG F M. Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments[J]. Marine Pollution Bulletin, 2018, 131: 378-385.
    [28] 林家洋, 宋哲岳, 李自民, 等. 滨海湿地碳汇和碳负排放技术研究进展[J]. 湿地科学, 2023, 21(2): 302-311.

    LIN J Y, SONG Z Y, LI Z M, et al. Research progress of carbon sink and carbon negative emission technologies in coastal wetlands[J]. Wetland Science, 2023, 21(2): 302-311. (in Chinese with English abstract)
    [29] 朱鹏光, 甘义群, 赖咏毅, 等. 海南东寨港红树林湿地沉积物氮形态空间分布特征及影响因素[J]. 地质科技通报, 2023, 42(1): 369-377.

    ZHU P G, GAN Y Q, LAI Y Y, et al. Spatial distribution and controlling factors of sediment nitrogen forms in the mangrove wetland at Dongzhai Port, Hainan Province[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 369-377. (in Chinese with English abstract)
    [30] SILES J A, MARGESIN R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation[J]. Scientific Reports, 2017, 7(1): 2204.
    [31] JIA T, GUO T Y, YAO Y S, et al. Seasonal microbial community characteristic and its driving factors in a copper tailings dam in the Chinese Loess Plateau[J]. Frontiers in Microbiology, 2020, 11: 1574.
    [32] 栾兆擎, 闫丹丹, 薛媛媛, 等. 滨海湿地互花米草入侵的生态水文学机制研究进展[J]. 农业资源与环境学报, 2020, 37(4): 469-476.

    LUAN Z Q, YAN D D, XUE Y Y, et al. Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands[J]. Journal of Agricultural Resources and Environment, 2020, 37(4): 469-476. (in Chinese with English abstract)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  229
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 录用日期:  2024-03-15
  • 修回日期:  2023-09-18

目录

    /

    返回文章
    返回