Distribution characteristics and influences of soil organic carbon in the coastal wetland of Lianyungang
-
摘要:
滨海湿地作为一种独特的湿地类型,海陆水文循环和生物地球化学循环复杂,有着巨大的固碳潜力,其土壤有机碳的研究对于了解碳循环、气候调节和生态系统健康等方面具有重要意义。在连云港市滨海湿地选取了光滩、碱蓬、互花米草和芦苇4种典型植物类型作为研究对象,分析了不同植物群落土壤有机碳含量的分布特征,并利用Pearson相关性分析、冗余分析(RDA)和结构方程(SEM)等统计方法,探讨了植物群落特征和土壤物理化学性质对土壤有机碳的调控作用,重点解析了滨海湿地环境因子与土壤有机碳含量间的关系。结果表明:在水平方向上,不同植物群落土壤有机碳含量大小依次为芦苇植被带((7.79±4.72) g/kg)>互花米草植被带((7.42±3.14) g/kg)>碱蓬植被带((4.95±3.40) g/kg)>光滩带((3.66±1.90) g/kg)。在垂向上,0~50 cm深度内的土壤有机碳含量的分布呈现随深度增加而降低的趋势;此外土壤有机碳含量和土壤物理化学性质、植物群落特征之间相关性显著,冗余分析结果显示在不同的植物类型中土壤有机碳含量与土壤容重呈负相关,与土壤含水率、植物株高、基径、盖度、地上生物量和地下生物量均呈正相关。结构方程模型表明,土壤含水率是影响滨海湿地土壤有机碳含量的最关键因素。以上研究可为更好地理解滨海湿地的生态系统结构和功能并为全球气候变化相关保护政策的制定提供相关的数据支持。
Abstract:Objective Coastal wetlands, a unique type of wetland with complex hydrologic and biogeochemical cycles, have ignificant carbon sequestration potential. Research on soil organic carbon (SOC) is critical for understanding carbon cycle, climatic regulation, and ecosystem health.
Methods This study focused on four typical vegetation types grown in the coastal wetlands of Lianyungang, namely,
Mudflats, Seepweed, Spartina alterniflora andReeds . We analyzed the distribution characteristics of soil organic carbon content across different plant communities, and utilized statistical methods such as pearson correlation analysis, redundancy analysis (RDA), and structural equation modeling (SEM) to explore the regulatory effects of plant community characteristics and soil physicochemical properties on soil organic carbon. Particular attention was given to the relationships between environmental factors of coastal wetlands and soil organic carbon content.Results Horizontally, the soil organic carbon content of the different plant communities decreased in the following order:
Reeds ((7.79±4.72) g/kg)>Spartina alterniflora ((7.42±3.14) g/kg)>Seepweed ((4.95±3.40) g/kg)>Mudflats ((3.66±1.90) g/kg). Vertically, the soil organic carbon content decreased with increasing depth within 0-50 cm. Additionally, significant correlations were found between SOC content and soil physicochemical properties, as well as plant community characteristics. The results of the redundancy analysis indicate that soil organic carbon content is negatively correlated with BD (bulk density) in different wetland types but is positively correlated with SWC (soil water content), height, diameter, coverage, AGB (above ground biomass) and BGB (below ground biomass). The structural equation model showed that the soil water content was the most important factor affecting soil organic carbon content in coastal wetlands.Conclusion These findings can not only promote a better understanding of coastal wetlands from their ecosystem structure and function but also provide relevant data support for policy making on global climate change.
-
图 7 土壤物理化学性质、植物群落特征和w(SOC)间拟合的结构方程模型
χ2=50.572; DF=18;χ2/DF=1.383;GFI=0.943; AGFI=0.886; RMSEA=0.101。红色表示负相关,蓝色表示正相关,箭头粗细表示相关性大小,其中χ2/DF为卡方自由度比值;GFI为拟合优度参数;AGFI为调整后拟合优度参数;RMSEA为近似误差均方根;e1~e7为残差变量
Figure 7. Structural equation model fitting between soil physicochemical properties, plant community characteristics and soil organic carbon content
表 1 研究区w(SOC)和土壤物理化学性质特征统计(n=180)
Table 1. Statistics of the soil organic carbon content and soil physicochemical properties in the study area(n=180)
变量 均值 标准差 变异系数/% 含水率/% 52.55 21.35 40.62 容重/(g·cm-3) 1.01 0.28 28.06 电导率/(mS·cm-1) 4.84 2.36 48.79 pH值 8.55 0.29 3.41 w(SOC)/(g·kg-1) 6.34 3.50 55.26 表 2 w(SOC)与植物群落特征统计
Table 2. Statistics of the soil organic carbon content and plant community characteristics
植物群落 w(SOC)/(g·kg-1) 株高/cm 基径/mm 盖度/% 地上生物量/(g·m-2) 地下生物量/(g·m-2) 互花米草 7.42±3.14 76.54 8.25 60.30 2 510.74 3 428.95 碱蓬 4.95±3.40 47.33 5.89 35.91 3 132.43 7 870.05 芦苇 7.79±4.72 165.36 6.71 90.00 4 643.25 14 474.90 表 3 植被带深度0~50 cm地下生物量(BGB)及w(SOC)分布情况
Table 3. Distribution of below-ground biomass(BGB) and soil organic carbon(SOC) content in the 0-50 cm vegetation zone
土壤深度/cm 互花米草 碱蓬 芦苇 BGB/(g·m-2) w(SOC)/(g·kg-1) BGB/(g·m-2) w(SOC)/(g·kg-1) BGB/(g·m-2) w(SOC)/(g·kg-1) 0~10 1 350.40 8.28±2.67 4 040.42 5.97±4.31 5 629.15 15.16±7.62 10~20 789.38 8.15±2.88 1 469.21 4.74±3.30 1 286.37 6.79±1.57 20~30 575.82 6.98±3.10 1 086.37 4.49±3.35 1 297.37 6.07±0.46 30~40 435.59 7.12±3.72 1 168.01 4.41±2.69 801.93 5.03±0.77 40~50 277.76 6.21±3.26 1 244.05 5.13±3.65 152.56 5.89±0.35 -
[1] 张美琪, 陈波, 赵敏. 贵州省湿地碳储量与碳中和潜力分析[J]. 地质科技通报, 2023, 42(2): 315-326. doi: 10.19509/j.cnki.dzkq.tb20220358ZHANG M Q, CHEN B, ZHAO M. Analysis of the carbon stock and carbon neutral potential of wetlands in Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 315-326. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220358 [2] MACREADIE P I, COSTA M D P, ATWOOD T B, et al. Blue carbon as a natural climate solution[J]. Nature Reviews Earth & Environment, 2021, 2(12): 826-839. [3] 周金戈, 覃国铭, 张靖凡, 等. 中国盐沼湿地蓝碳碳汇研究进展[J]. 热带亚热带植物学报, 2022, 30(6): 765-781.ZHOU J G, QIN G M, ZHANG J F, et al. Research progress of blue carbon sink in Chinese salt marshes[J]. Journal of Tropical and Subtropical Botany, 2022, 30(6): 765-781. (in Chinese with English abstract) [4] 姜勇, 庄秋丽, 梁文举. 农田生态系统土壤有机碳库及其影响因子[J]. 生态学杂志, 2007, 26(2): 278-285.JIANG Y, ZHUANG Q L, LIANG W J. Soil organic carbon pool and its affecting factors in farmland ecosystem[J]. Chinese Journal of Ecology, 2007, 26(2): 278-285. (in Chinese with English abstract) [5] DE PAUL OBADE V, LAL R. Using meta-analyses to assess pedo-variability under different land uses and soil management in central Ohio, USA[J]. Geoderma, 2014, 232: 56-68. [6] 么秀颖, 闫丹丹, 李静泰, 等. 盐城大丰麋鹿自然保护区滨海湿地土壤有机碳分布特征[J]. 海洋湖沼通报, 2022, 44(3): 101-108.YAO X Y, YAN D D, LI J T, et al. Distribution characteristics of soil organic carbon in the coastal wetland of Dafeng Milu national nature reserve, Yancheng[J]. Transactions of Oceanology and Limnology, 2022, 44(3): 101-108. (in Chinese with English abstract) [7] 严格, 葛振鸣, 张利权. 崇明东滩湿地不同盐沼植物群落土壤碳储量分布[J]. 应用生态学报, 2014, 25(1): 85-91.YAN G, GE Z M, ZHANG L Q. Distribution of soil carbon storage in different saltmarsh plant communities in Chongming Dongtan wetland[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 85-91. (in Chinese with English abstract) [8] 訾园园, 郗敏, 孔范龙, 等. 胶州湾滨海湿地土壤有机碳时空分布及储量[J]. 应用生态学报, 2016, 27(7): 2075-2083.ZI Y Y, XI M, KONG F L, et al. Temporal and spatial distribution of soil organic carbon and its storage in the coastal wetlands of Jiaozhou Bay, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2075-2083. (in Chinese with English abstract) [9] 邵学新, 杨文英, 吴明, 等. 杭州湾滨海湿地土壤有机碳含量及其分布格局[J]. 应用生态学报, 2011, 22(3): 658-664.SHAO X X, YANG W Y, WU M, et al. Soil organic carbon content and its distribution pattern in Hangzhou Bay coastal wetlands[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 658-664. (in Chinese with English abstract) [10] 汪艳, 谭季, 谭凤凤, 等. 盐分增强对河口淡水潮汐湿地土壤活性碳组分和碳获取酶活性的影响[J]. 环境科学学报, 2023, 43(5): 459-470.WANG Y, TAN J, TAN F F, et al. Impact of salinization on soil labile carbon fractions and carbon-acquiring enzyme activities in a tidal freshwater wetland[J]. Acta Scientiae Circumstantiae, 2023, 43(5): 459-470. (in Chinese with English abstract) [11] BERNAL B, MITSCH W J. Comparing carbon sequestration in temperate freshwater wetland communities[J]. Global Change Biology, 2012, 18(5): 1636-1647. [12] KAUR B, GUPTA S R, SINGH G. Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India[J]. Applied Soil Ecology, 2000, 15(3): 283-294. [13] VALÉRY L, BOUCHARD V, LEFEUVRE J C. Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh[J]. Wetlands, 2004, 24(2): 268-276. [14] 高建华, 杨桂山, 欧维新. 互花米草引种对苏北潮滩湿地TOC、TN和TP分布的影响[J]. 地理研究, 2007, 26(4): 799-808.GAO J H, YANG G S, OU W X. The influence after introduction of Spartina alterniflora on the distribution of TOC, TN and TP in the national Yancheng rare birds nature reserve, Jiangsu Province, China[J]. Geographical Research, 2007, 26(4): 799-808. (in Chinese with English abstract) [15] 王建步, 张杰, 马毅, 等. 基于GF-1 WFV的黄河口湿地植被碳储量估算研究[J]. 海洋科学进展, 2019, 37(1): 75-83.WANG J B, ZHANG J, MA Y, et al. Estimation of vegetation carbon storage in the Yellow River Estuary wetland based on GF-1 WFV satellite image[J]. Advances in Marine Science, 2019, 37(1): 75-83. (in Chinese with English abstract) [16] 张明亮. 滨海盐沼湿地退化机制及生态修复技术研究进展[J]. 大连海洋大学学报, 2022, 37(4): 539-549.ZHANG M L. Research advancement on degradation mechanism and ecological restoration technology of coastal salt-marsh: A review[J]. Journal of Dalian Ocean University, 2022, 37(4): 539-549. (in Chinese with English abstract) [17] 刘文光, 李云芝, 刘惠芬, 等. 烟台高新区沿海土壤理化分析[J]. 安徽农业科学, 2017, 45(14): 91-93.LIU W G, LI Y Z, LIU H F, et al. Analysis on physical and chemical properties of coastal soil in Yantai Hi-Tech zone[J]. Journal of Anhui Agricultural Sciences, 2017, 45(14): 91-93. (in Chinese with English abstract) [18] WANG Q D, SONG J M, CAO L, et al. Distribution and storage of soil organic carbon in a coastal wetland under the pressure of human activities[J]. Journal of Soils and Sediments, 2017, 17(1): 11-22. [19] GUAN Y N, BAI J H, WANG J J, et al. Effects of groundwater tables and salinity levels on soil organic carbon and total nitrogen accumulation in coastal wetlands with different plant cover types in a Chinese Estuary[J]. Ecological Indicators, 2021, 121: 106969. [20] 全桂香, 严金龙. 不同生态带下盐城滩涂湿地土壤颗粒和矿物结合有机碳特征[J]. 地球与环境, 2010, 38(2): 214-218.QUAN G X, YAN J L. Organic carbon characteristics of the particulate organic carbon and mineral-associated organic carbon in Yancheng soils in different ecological zones[J]. Earth and Environment, 2010, 38(2): 214-218. (in Chinese with English abstract) [21] ZHOU L, YIN S, AN S, et al. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China[J]. Clean-Soil, Air, Water, 2015, 43(4): 569-576. [22] 金宝石, 闫鸿远, 张林海, 等. 中国滨海互花米草湿地土壤有机碳时空变化及其影响因素[J]. 生态环境学报, 2016, 25(12): 2021-2027.JIN B S, YAN H Y, ZHANG L H, et al. Spatial-temporal variations and theirs influence factors of soil organic carbon under the spartina alterniflora wetland in China[J]. Ecology and Environmental Sciences, 2016, 25(12): 2021-2027. (in Chinese with English abstract) [23] 李健成, 吴伊婧, 江彬彬, 等. 不同植被类型对福建三沙湾潮滩有机碳埋藏的影响[J]. 海洋科学, 2021, 45(6): 13-21.LI J C, WU Y J, JIANG B B, et al. Effects of different vegetation types on organic carbon burial in tidal flats of the Sansha Bay, Fujian Province[J]. Marine Sciences, 2021, 45(6): 13-21. (in Chinese with English abstract) [24] ZHAO Q, BAI J, LIU P, et al. Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands[J]. Clean-Soil, Air, Water, 2015, 43(3): 441-445. [25] SPIVAK A C, SANDERMAN J, BOWEN J L, et al. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems[J]. Nature Geoscience, 2019, 12(9): 685-692. [26] KAŠTOVSKÁ E, ŠANTR ĈKOVÁ H. Fate and dynamics of recently fixed C in pasture plant-soil system under field conditions[J]. Plant and Soil, 2007, 300(1): 61-69. [27] XIONG Y M, LIAO B W, WANG F M. Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments[J]. Marine Pollution Bulletin, 2018, 131: 378-385. [28] 林家洋, 宋哲岳, 李自民, 等. 滨海湿地碳汇和碳负排放技术研究进展[J]. 湿地科学, 2023, 21(2): 302-311.LIN J Y, SONG Z Y, LI Z M, et al. Research progress of carbon sink and carbon negative emission technologies in coastal wetlands[J]. Wetland Science, 2023, 21(2): 302-311. (in Chinese with English abstract) [29] 朱鹏光, 甘义群, 赖咏毅, 等. 海南东寨港红树林湿地沉积物氮形态空间分布特征及影响因素[J]. 地质科技通报, 2023, 42(1): 369-377.ZHU P G, GAN Y Q, LAI Y Y, et al. Spatial distribution and controlling factors of sediment nitrogen forms in the mangrove wetland at Dongzhai Port, Hainan Province[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 369-377. (in Chinese with English abstract) [30] SILES J A, MARGESIN R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation[J]. Scientific Reports, 2017, 7(1): 2204. [31] JIA T, GUO T Y, YAO Y S, et al. Seasonal microbial community characteristic and its driving factors in a copper tailings dam in the Chinese Loess Plateau[J]. Frontiers in Microbiology, 2020, 11: 1574. [32] 栾兆擎, 闫丹丹, 薛媛媛, 等. 滨海湿地互花米草入侵的生态水文学机制研究进展[J]. 农业资源与环境学报, 2020, 37(4): 469-476.LUAN Z Q, YAN D D, XUE Y Y, et al. Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands[J]. Journal of Agricultural Resources and Environment, 2020, 37(4): 469-476. (in Chinese with English abstract)