留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南天山大龙池堰塞体形成演化过程分析

高旭

高旭. 南天山大龙池堰塞体形成演化过程分析[J]. 地质科技通报, 2024, 43(1): 229-240. doi: 10.19509/j.cnki.dzkq.tb20230322
引用本文: 高旭. 南天山大龙池堰塞体形成演化过程分析[J]. 地质科技通报, 2024, 43(1): 229-240. doi: 10.19509/j.cnki.dzkq.tb20230322
GAO Xu. Analysis of the formation and evolution process of the Dalongchi landslide dam in the South Tianshan Mountains[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 229-240. doi: 10.19509/j.cnki.dzkq.tb20230322
Citation: GAO Xu. Analysis of the formation and evolution process of the Dalongchi landslide dam in the South Tianshan Mountains[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 229-240. doi: 10.19509/j.cnki.dzkq.tb20230322

南天山大龙池堰塞体形成演化过程分析

doi: 10.19509/j.cnki.dzkq.tb20230322
基金项目: 

国家重点研发计划 2017YFA063101

详细信息
    通讯作者:

    高旭, E-mail: 1143501472@qq.com

  • 中图分类号: P642.22

Analysis of the formation and evolution process of the Dalongchi landslide dam in the South Tianshan Mountains

More Information
  • 摘要:

    堰塞体是高山峡谷区开展工程建设重点关注的地质体,本研究以南天山大龙池堰塞体为研究对象,探索南天山高山峡谷地区堰塞体的成因及演化过程。基于大龙池区域卫星遥感影像、区域地质资料,依托现场调查和地质钻探等方法,结合理论计算与有限元-离散元模拟技术,对南天山高山峡谷地区堰塞体的成因及演化过程进行了系统研究。结果表明:(1)大龙池堰塞体北侧山体陡峭,山体表面可见多处滑坡擦痕和刻槽,堰塞体堆积结构具有明显的反粒序和拼图结构特征,提出了大龙池堰塞体为高速远程古滑坡堆积的成因机理;(2)通过复原大龙池北面山体滑坡原始坡面,对其运动学特征进行理论计算与数值仿真模拟,结果表明大龙池北侧山体曾发生高速远程滑坡;(3)大龙池堰塞体的形成演化过程可分为古滑坡孕育、古滑坡堵河形成堰塞体以及堰塞体溃决3个阶段。研究结论可为南天山地区类似堰塞体的成因分析提供参考。

     

  • 图 1  研究区遥感影像图

    Figure 1.  Remote sensing image of the study area

    图 2  大龙池堰塞体区域地质图

    Figure 2.  Geological map of the Dalongchi landslide dam

    图 3  大龙池堰塞体工程地质图和A-A′剖面图

    Figure 3.  Engineering geological map of the Dalongchi landslide dam and A-A′ profile

    图 4  堆积结构特征

    Figure 4.  Characteristics of the accumulation structure

    图 5  钻孔DXLCZ-5(a, b)和DXLCZ-6(c, d)岩心照片

    Figure 5.  DXLCZ-5(a, b) and DXLCZ-6(c, d) core photos

    图 6  北侧岩壁表面构造特征

    Figure 6.  Surface structural characteristics of the northern rock wall

    图 7  大龙池堰塞体形成演化过程

    Figure 7.  Formation and evolution process of the Dalongchi landslide dam

    图 8  大龙池右岸斜坡岩体结构面赤平投影图

    J1. 张拉节理;J2. 剪切节理

    Figure 8.  Stereographic projection of the discontinities on the right bank of the Dalongnci rock slope

    图 9  基于最大运动距离(a)和质心运动距离(b)的滑体速度变化曲线

    Figure 9.  Speed variation curve of the sliding mass based on the maximum movement distanc (a) and centroid motion distance (b)

    图 10  不同时间滑坡运动状态

    Figure 10.  Landslide motion state at different times

    图 11  不同监测颗粒速度变化图

    Figure 11.  Different monitoring particle velocity changes

    图 12  不同监测颗粒位移变化图

    Figure 12.  Different monitoring particle displacement changes

    表  1  模型颗粒微观参数

    Table  1.   Microscopic parameters of model particles

    球最小半径Rmin/m 球半径比Rmax/Rmin 球-球接触模量Ec/GPa 球刚度比kn/ks 平行黏结半径乘子λ 平行黏结模量Ec/GPa 平行黏结刚度比kn/ks 球摩擦因素f
    4 2 34 1 1 34 1.5 0.5
    下载: 导出CSV
  • [1] 韩旭东. 晚更新世曲龙滑坡堵江事件分析及堵江运动特征数值模拟研究[D]. 长春: 吉林大学, 2018.

    HAN X D. Analysis of the Late Pleistocene Qulong landslide river blocking event and numerical simulation of the characteristics of river blocking movement[D]. Changchun: Jilin University, 2018. (in Chinese with English abstract)
    [2] MA J X, CHEN J, CUI Z J, et al. Reconstruction of catastrophic outburst foods of the Diexi ancient landslide dammed lake in the Upper Minjiang River, eastern Tibetan Plateau[J]. Natural Hazards, 2022, 112: 1191-1221. doi: 10.1007/s11069-022-05223-z
    [3] LIAO H M, YANG X G, LI H B, et al. Increase in hazard from successive landslide dammed lakes along the Jinsha River, Southwest China[J]. Natural Hazards and Risk, 2020, 11: 1, 1115-1128.
    [4] WU L Z, DENG H, HUANG R Q, et al. Evolution of lakes created by landslide dams and the role of dam erosion: A case study of the Jiajun landslide on the Dadu River, China[J]. Quaternary International, 2019, 503: 41-50. doi: 10.1016/j.quaint.2018.08.001
    [5] 简文星, 殷坤龙, 汪洋, 等. 万州西溪铺松散堆积体成因分析及稳定性评价[J]. 地质科技情报, 2005, 24(增刊1): 165-169.

    JIAN W X, YIN K L, WANG Y, et al. Mechanism analysis and stability assessment of Xixipu loose accumulation body in Wanzhou[J]. Geological Science and Technology Information, 2005, 24(S1): 165-169. (in Chinese with English abstract)
    [6] 简文星, 殷坤龙, 郑磊, 等. 万州安乐寺滑坡前缘松散堆积体成因与防治对策[J]. 地球科学, 2005, 30(4): 487-492, 502. doi: 10.3321/j.issn:1000-2383.2005.04.013

    JIAN W X, YIN K L, ZHENG L, et al. Formation mechanism and slide prevention methods of soil deposits at the toe of Anlesi landslide in Wanzhou[J]. Earth Science, 2005, 30(4): 487-492, 502. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-2383.2005.04.013
    [7] 刘涛, 张明, 王立朝, 等. 江顶崖古滑坡形成演化机理与堆积体稳定性评价[J/OL]. 地质科技通报: 1-14[2023-07-13]. doi: 10.19509/j.cnki.dzkq.tb20230076.

    LIU T, ZHANG M, WANG L C, et al. Formation and evolution mechanism of Jiangdingya ancient landslide and stability evaluation of accumulation body[J/OL]. Bulletin of Geological Science and Technology, 1-14[2023-07-13]. doi: 10.19509/j.cnki.dzkq.tb20230076. (in Chinese with English abstract)
    [8] 金辉. 西南地区河谷深厚覆盖层基本特征及成因机理研究[D]. 成都: 成都理工大学, 2008.

    JIN H. Study on the basic characteristics and genetic mechanism of the thick overburden layer in Southwest China[D]. Chengdu: Chengdu University of Technology, 2008. (in Chinese with English abstract)
    [9] 殷跃平, 张加桂, 陈宝荪, 等. 三峡库区巫山移民新城址松散堆积体成因机制研究[J]. 工程地质学报, 2000, 8(3): 265-271. doi: 10.3969/j.issn.1004-9665.2000.03.002

    YIN Y P, ZHANG J G, CHEN B S, et al. Formtion mechanism of large-scale loose sediment at the relocation sites of Wushan County of the Three-Gorges[J]. Journal of Engineering Geology, 2000, 8(3): 265-271. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2000.03.002
    [10] 贺书恒, 胡卸文, 刘波, 等. 川藏铁路洛隆车站察达大型堆积体成因分析[J]. 工程地质学报, 2021, 29(2): 353-364.

    HE S H, HU X W, LIU B, et al. Formation analysis of Chada large-scale accumulation of Luolong station of Sichuan-Tibet Railway[J]. Journal of Engineering Geology, 2021, 29(2): 353-364. (in Chinese with English abstract)
    [11] 钟育瑾, 范宣梅, 戴岚欣, 等. 岷江叠溪巨型古滑坡研究[J]. 地球物理学进展, 2021, 36(4): 1784-1796.

    ZHONG Y J, FAN X M, DAI L X, et al. Research on the Diexi giant paleo-landslide along Minjiang River in Sichuan, China[J]. Progress in Geophysics, 2021, 36 (4): 1784-1796. (in Chinese with English abstract)
    [12] 刘衡秋, 胡瑞林, 曾如意. 云南虎跳峡两家人松散堆积体的基本特征及成因探讨[J]. 第四纪研究, 2005, 25(1): 100-106.

    LIU H Q, HU R L, ZENG R Y. Analysis of the basic features and the formation mechanism of Liangjiaren loose deposits in Tiger-Leaping-Gorge, Yunnan[J]. Quaternary Research, 2005, 25(1): 100-106. (in Chinese with English abstract)
    [13] 代欣然, 赵建军, 赖琪毅, 等. 青藏高原察达高速远程滑坡运动过程与形成机理[J]. 地球科学, 2022, 47(6): 1932-1944.

    DAI X R, ZHAO J J, LAI Q Y, et al. Movement process and formation mechanism of rock avalanche in Chada, Tibet Plateau[J]. Earth Science, 2022, 47 (6): 1932-1944. (in Chinese with English abstract)
    [14] GEI Y F, TANG H M, EZ ELDIN M A M, et al. Deposit characteristics of the Jiweishan rapid long-runout landslide based on field investigation and numerical modeling[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 4383-4396. doi: 10.1007/s10064-018-1422-3
    [15] YIN Y P, SUN P, ZHANG M, et al. Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China[J]. Landslides, 2011, 8: 49-65. doi: 10.1007/s10346-010-0237-5
    [16] GUO C B, WU R A, ZHANG Y S, et al. Characteristics and formation mechanism of giant long runout landslide: A case study of the Gamisi ancient landslide in the Upper Minjiang River, China[J]. Acta Geologica Sinica: English Edition, 2019, 93(4): 1113-1124. doi: 10.1111/1755-6724.13805
    [17] 陈剑, 陈瑞琛, 米东东, 等. 西藏瓦来高速远程滑坡的运动学过程与碎裂化特征[J]. 工程科学与技术, 2020, 52(6): 30-39.

    CHEN J, CHEN R C, MI D D, et al. Kinematic processes and fragmentation characteristics of Walai rock avalanche landslide in Tibet[J]. Engineering Science and Technology, 2020, 52 (6): 30-39. (in Chinese with English abstract)
    [18] 吴茂林, 罗刚, 高延超, 等. 正反粒序结构条件下滑坡堰塞坝破坏模式研究[J]. 水文地质工程地质, 2022, 49(6): 124-132.

    WU M L, LUO G, GAO Y C, et al. A study of the failure mode of landslide dam under the structural conditions of positive and reverse grain sequences[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 124-132. (in Chinese with English abstract)
    [19] 张永双, 曲永新, 王献礼, 等. 中国西南山区第四纪冰川堆积物工程地质分类探讨[J]. 工程地质学报, 2009, 17(5): 581-589. doi: 10.3969/j.issn.1004-9665.2009.05.001

    ZHANG Y S, QU Y X, WANG X L, et al. Study on the engineering geological classification of Quaternary glacial deposits in the mountainous areas of Southwest China[J]. Journal of Engineering Geology, 2009, 17 (5): 581-589. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.05.001
    [20] 尼伧娜. 浅析波堆水电站坝址区右岸冰碛物的形成及其工程特性[J]. 西北水电, 2014, 33(5): 14-17.

    NI C N. Study on formation and engineering characteristics of Glacial Till, Bodui Hydropower Project[J]. Northwest Hydropower, 2014, 33(5): 14-17. (in Chinese with English abstract)
    [21] 武龙. 川藏铁路通麦隧道出口冰碛物边坡稳定性分析[D]. 成都: 西南交通大学, 2020.

    WU L. Stability analysis of the slope of glacial till at the exit of Tongmai Tunnel of Sichuan-Tibet Highway[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese with English abstract)
    [22] 新疆地质局区域地质测量大队. 1∶200 000库勒幅(K-44-XⅧ)区域地质调查报告[R]. 新疆昌吉: 新疆地质局区域地质测量大队. 1975.

    Regional Geological Survey Brigade of Xinjiang Geological Bureau. 1∶200 000 Kule sheet (K-44-X Ⅷ) regional geological survey report[R]. Changji Xinjiang: Regional Geological Survey Brigade of Xinjiang Geological Bureau, 1975. (in Chinese)
    [23] 刘一玲. 新疆库车大峡谷地质公园资源调查评价[J]. 四川地质学报, 2009, 29(增刊2): 268-271.

    LIU Y L. Survey and evaluation of resources in the Kuqa Gorge Geopark, Xinjiang[J]. Sichuan Journal of Geology, 2009, 29 (S2): 268-271. (in Chinese with English abstract)
    [24] 胥颐, 刘福田, 刘建华, 等. 天山地震带的地壳结构与强震构造环境[J]. 地球物理学报, 2000, 43(2): 184-193.

    XU Y, LIU F T, LIU J H, et al. Crustal structure and tectonic environment of strong earthquake in the Tianshan earthquake belt[J]. Journal of Geophysics, 2000, 43 (2): 184-193. (in Chinese with English abstract)
    [25] 王筱荣, 王琼. 南天山地震带地震平静与中强震关系再研究[J]. 西北地震学报, 2010, 32(3): 279-285.

    WANG X R, WANG Q. Further restudy on the relationship between the seismic quiescene and moderale-strong earquakes in the South Tianshan seismic belt[J]. Northwest Seismological Journal, 2010, 32 (3): 279-285. (in Chinese with English abstract)
    [26] 周绪纶. 四川九寨沟风景区的长海不是冰川堰塞湖而是崩塌型堰塞湖[J]. 地质通报, 2009, 28(7): 970-978.

    ZHOU X L. Instead of glacier damming lake, Changhai Lake in Jiuzhaigou resort area, Sichuan Province, China should be regarded as a damming lake caused by collaps[J]. Geological Bulletin, 2009, 28 (7): 970-978. (in Chinese with English abstract)
    [27] 陈剑, 陈瑞琛, 崔之久. 高速远程滑坡的地貌学与沉积学研究进展[J]. 地学前缘, 2021, 28(4): 349-360.

    CHEN J, CHEN R C, CUI Z J. Research progress in the morphology and sedimentology of long runout landslides[J]. Earth Science Frontier, 2021, 28 (4): 349-360. (in Chinese with English abstract)
    [28] KÖPFLI P, GRÖMIGER L M, MOORE J R, et al. The Oeschinensee rock avalanche, Bernese Alps, Switzerland: A co-seismic failure 2300 years ago?[J]. Swiss Journal of Geosciences, 2018, 111: 205-219. doi: 10.1007/s00015-017-0293-0
    [29] SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 1973, 5: 231-236. doi: 10.1007/BF01301796
    [30] 刘广煜, 徐文杰, 佟彬, 等. 基于块体离散元的高速远程滑坡灾害动力学研究[J]. 岩石力学与工程学报, 2019, 38(8): 1557-1566.

    LIU G Y, XU W J, TONG B, et al. Study on the dynamics of high-speed remote landslide disaster based on block discrete element[J]. Journal of Rock Mechanics and Engineering, 2019, 38 (8): 1557-1566. (in Chinese with English abstract)
    [31] 张龙, 唐辉明, 熊承仁, 等. 鸡尾山高速远程滑坡运动过程PFC3D模拟[J]. 岩石力学与工程学报, 2012, 31(增刊1): 2601-2611.

    ZHANG L, TANG H M, XIONG C R, et al. Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D[J]. Journal of Rock Mechanics and Engineering, 2012, 31 (S1): 2601-2611. (in Chinese with English abstract)
    [32] 周赞, 罗永红, 南凯, 等. "6.1"芦山地震作用下宝兴新华村滑坡动力响应与失稳过程离散元模拟[J/OL]. 地质科技通报: 1-11[2023-07-13]. DOI: 10.19509/j.cnki.dzkq.tb20230157.

    ZHOU Z, LUO Y H, NAN K, et al. Discreteelement simulation of dynamic response and instability process of Xinhua Village landslide in Baoxing County under "6.1" Lushan earthquake[J/OL]. Bulletin of Geological Science and Technology: 1-11[2023-07-13]. DOI: 10.19509/j.cnki.dzkq.tb20230157. (in Chinese with English abstract)
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  347
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 录用日期:  2023-09-13
  • 修回日期:  2023-09-11

目录

    /

    返回文章
    返回