留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

历史遗留锰矿山老窑水来源及水体污染成因解析

巫政卿 罗明明 李宁 魏世毅 李大星 皮景 欧任文

巫政卿, 罗明明, 李宁, 魏世毅, 李大星, 皮景, 欧任文. 历史遗留锰矿山老窑水来源及水体污染成因解析[J]. 地质科技通报, 2024, 43(5): 225-234. doi: 10.19509/j.cnki.dzkq.tb20230334
引用本文: 巫政卿, 罗明明, 李宁, 魏世毅, 李大星, 皮景, 欧任文. 历史遗留锰矿山老窑水来源及水体污染成因解析[J]. 地质科技通报, 2024, 43(5): 225-234. doi: 10.19509/j.cnki.dzkq.tb20230334
WU Zhengqing, LUO Mingming, LI Ning, WEI Shiyi, LI Daxing, PI Jing, OU Renwen. Identification of the sources of old kiln water and the causes of water pollution in the historical manganese mine[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 225-234. doi: 10.19509/j.cnki.dzkq.tb20230334
Citation: WU Zhengqing, LUO Mingming, LI Ning, WEI Shiyi, LI Daxing, PI Jing, OU Renwen. Identification of the sources of old kiln water and the causes of water pollution in the historical manganese mine[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 225-234. doi: 10.19509/j.cnki.dzkq.tb20230334

历史遗留锰矿山老窑水来源及水体污染成因解析

doi: 10.19509/j.cnki.dzkq.tb20230334
基金项目: 

湖南省自然资源厅地质调查项目 2022002

湖南省科技厅重大科技攻关项目 2023ZJ1090

国家自然科学基金项目 42172276

详细信息
    作者简介:

    巫政卿, E-mail: 593086206@qq.com

    通讯作者:

    罗明明, E-mail: luomingming@cug.edu.cn

  • 中图分类号: X523

Identification of the sources of old kiln water and the causes of water pollution in the historical manganese mine

More Information
  • 摘要:

    历史遗留矿山的老窑水防治是矿山水环境治理中的难点。选取中国锰三角地区的典型锰矿区为研究对象,以查明老窑水的来源及水体污染成因。综合利用矿山水文地质调查、气象水文分析、水化学与同位素溯源等技术方法对老窑水来源和特征污染物进行了识别,并分析了矿区的水体污染成因模式。结果表明:研究区老窑水动态对降雨响应灵敏,老窑水主要来源于巷道和优势径流通道汇集的大气降水和含水层中的地下水;矿区矿井水、巷道水中的特征污染物为硫酸锰,矿山排水的特征污染物为硫酸钠,硫酸锰主要由硫铁矿氧化和菱锰矿溶解而形成;矿山固体废弃物淋滤入渗和老窑水的混合是区内地下水的主要污染方式,而地表水主要受矿山固体废弃物淋滤汇流、巷道口排水和矿山排水的污染。研究成果为矿山水环境治理提供了水量形成和水质演化的科学依据。

     

  • 图 1  研究区水文地质略图及采样点分布

    Q.第四系; ∈3-4ls.寒武系娄山关组; ∈3g.寒武系高台组; ∈2q.寒武系清虚洞组; ∈1-2s.寒武系石牌组; ∈1n.寒武系牛蹄塘组; Z2dy.震旦系灯影组; Z1d.震旦系陡山沱组; Nh2n南华系南沱组; Nh1d.南华系大塘坡组; Nh1g.南华系古城组; Qbw.青白口系五强溪组; Qbm.青白口系马底驿组

    Figure 1.  Schematic hydrogeological map and sampling points in study area

    图 2  研究区水文地质剖面图(地层代号详见正文)

    Figure 2.  Hydrogeological cross-section of the study area

    图 3  研究区水体氘氧同位素分布图

    Figure 3.  Distribution plots of δD vs. δ18O of water in the study area

    图 4  2022年研究区矿井水位和排水量与降雨量响应关系图

    Figure 4.  Plots of rainfall with water level in mine pit and mine drainage of the study area at 2022

    图 5  研究区各水样典型水化学指标质量浓度箱线图

    Figure 5.  Box line graph of chemical index concentration of water samples in the study area

    图 6  矿区各水样水化学Piper三线图

    Figure 6.  Piper diagram of water chemistry of water samples in the mining area

    图 7  矿区水体离子比值趋势图

    Figure 7.  Trends of ion ratio of water samples in the mining area

    图 8  矿区地下水污染模式概念图(地层代号见正文)

    a.矿山固体废弃物淋滤入渗污染模式示意图;b.断裂带导水入渗淋滤污染模式示意图

    Figure 8.  Conceptual diagram of groundwater pollution pattern in the mining area

    图 9  矿区地表水污染模式概念图

    Figure 9.  Conceptual diagram of surface water pollution pattern in the mining area

  • [1] 武强, 董书宁, 张志龙. 矿井水害防治[M]. 江苏徐州: 中国矿业大学出版社, 2007.

    WU Q, DONG S N, ZHANG Z L. Mine water disaster prevention and control[M]. Xuzhou Jiangsu: China University of Mining & Technology Press, 2007. (in Chinese)
    [2] WANG Y, MA T, LUO Z. Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: A case study in the Liulin karst system, northwestern China[J]. Journal of Hydrology, 2001, 246(1/2/3/4): 223-234.
    [3] 黄荷, 陈植华, 王涛, 等. 岩溶矿区水文地球化学特征及其水源指示意义[J]. 水文地质工程地质, 2019, 46(1): 19-26.

    HUANG H, CHEN Z H, WANG T, et al. Groundwater source identification incarbonate-hosted deposit using hydrogeochemistry, hydrogen and oxygen isotope method[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 19-26. (in Chinese with English abstract)
    [4] 马超, 曾斌, 罗明明, 等. 武汉两湖隧道岩溶水系统结构及水循环规律[J]. 地质科技通报, 2022, 41(5): 395-404. doi: 10.19509/j.cnki.dzkq.2022.0198

    MA C, ZENG B, LUO M M, et al. Structure of karst water system and hydrological circulation characteristics of Lianghu Tunnel in Wuhan[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 395-404. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0198
    [5] 廖启鹏, 陈茹, 黄士真. 基于模糊综合评判与GIS方法的废弃矿区景观评价[J]. 地质科技情报, 2019, 38(6): 241-250.

    LIAO Q P, CHEN R, HUANG S Z. Study on landscape evaluation of abandoned mining area based on fuzzy comprehensive evaluation and GIS[J]. Geological Science and Technology Information, 2019, 38(6): 241-250. (in Chinese with English abstract)
    [6] 袁慧卿. 姚桥煤矿主要充水含水层水化学特征及水源判别方法研究[D]. 江苏徐州: 中国矿业大学, 2021.

    YUAN H Q. Study on the hydrochemical characteristics and water source discrimination method of the main water-filled aquifers in Yaoqiao Coalmine[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2021. (in Chinese with English abstract)
    [7] ZHANG Z H, XIAO C L, ADEYEYE O, et al. Source and mobilization mechanism of iron, manganese and arsenic in groundwater of Shuangliao City, Northeast China[J]. Water, 2020, 12(2): 534. doi: 10.3390/w12020534
    [8] 孙龙, 刘廷玺, 段利民, 等. 矿区流域不同水体同位素时空特征及水循环指示意义[J]. 水科学进展, 2022, 33(5): 805-815.

    SUN L, LIU T X, DUAN L M, et al. Spatial and temporal characteristics of isotopes of different water sources and implications for water circulation in mining areas[J]. Advances in Water Science, 2022, 33(5): 805-815. (in Chinese with English abstract)
    [9] 周祥, 钱静. 江西省靖安县大雾塘矿区矿床充水因素分析[J]. 世界有色金属, 2017(19): 217-218.

    ZHOU X, QIAN J. Analysis of water charge factor for the mineral deposits in Dawutang of Jing'an County, Jiangxi Province[J]. World Nonferrous Metals, 2017(19): 217-218. (in Chinese with English abstract)
    [10] 谢红东. 织金矿区矿井充水因素及涌水量预测研究[J]. 世界有色金属, 2020(12): 181-183.

    XIE H D. Research on water-filling factors and water inflow prediction of Yingjiao Coal Mine in Zhijin mining area[J]. World Nonferrous Metals, 2020(12): 181-183. (in Chinese with English abstract)
    [11] 李琬钰, 周建伟, 贾晓岑, 等. 湖南锡矿山锑矿区水环境中DOM三维荧光特征及其对锑污染的指示意义[J]. 地质科技通报, 2022, 41(4): 215-224. doi: 10.19509/j.cnki.dzkq.2022.0119

    LI W Y, ZHOU J W, JIA X C, et al. EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan, Hunan Province[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 215-224. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0119
    [12] NASSERY H R, ALIJANI F. The effects of an abandoned coal mine on groundwater quality in the science and research park(SRP) of Shahid Beheshti University, Zirab(northern Iran)[J]. Mine Water and the Environment, 2014, 33(3): 266-275.
    [13] ZHANG Y, REN B Z, HURSTHOUSE A S, et al. An improved SWAT for predicting manganese pollution load at the soil-water interface in a manganese mine area[J]. Polish Journal of Environmental Studies, 2018, 27(5): 2357-2365.
    [14] PRASAD B, MAITI D, SINGH K K K. Impact of fly ash placement in an abandoned opencast mine on surface and ground water quality: A case study[J]. Mine Water and the Environment, 2019, 38(1): 72-80.
    [15] 谢李娜, 周建伟, 郝春明, 等. 湘中锡矿山北矿区地下水化学特征及污染成因[J]. 地质科技情报, 2016, 35(2): 197-202.

    XIE L N, ZHOU J W, HAO C M, et al. Hydrochemical characteristics and contaminative causes of groundwater in the north area of Xikuangshan Antimony Mine, Hunan Province[J]. Geological Science and Technology Information, 2016, 35(2): 197-202. (in Chinese with English abstract)
    [16] RÖSNER U. Effects of historical mining activities on surface water and groundwater: An example from northwest Arizona[J]. Environmental Geology, 1998, 33(4): 224-230.
    [17] WRIGHT I A, PACIUSZKIEWICZ K, BELMER N. Increased water pollution after closure of Australia's longest operating underground coal mine: A 13-month study of mine drainage, water chemistry and river ecology[J]. Water, Air, & Soil Pollution, 2018, 229(3): 55.
    [18] LIU Z, KUANG Y, LAN S T, et al. Pollution distribution of potentially toxic elements in a karstic river affected by manganese mining in Changyang, western Hubei, central China[J]. International Journal of Environmental Research and Public Health, 2021, 18(4): 1870.
    [19] 常昕, 章新平, 刘仲藜, 等. 长沙降水中稳定同位素的昼夜差别[J]. 热带地理, 2021, 41(3): 635-644.

    CHANG X, ZHANG X P, LIU Z L, et al. Differences in stable isotopes in precipitation between day and night: A case study of Changsha[J]. Tropical Geography, 2021, 41(3): 635-644. (in Chinese with English abstract)
    [20] KHOZYEM H, HAMDAN A, TANTAWY A A, et al. Distribution and origin of iron and manganese in groundwater: Case study, Balat-Teneida area, El-Dakhla Basin, Egypt[J]. Arabian Journal of Geosciences, 2019, 12(16): 523.
    [21] 周立同, 刘邦定, 谭仕敏. 湖南花垣地区大塘坡式锰矿成矿地质条件及裂谷盆地研究[J]. 中国资源综合利用, 2021, 39(3): 98-100.

    ZHOU L T, LIU B D, TAN S M. Research on metallogenic geological conditions and rift basin of datangpo-type manganese deposit in Huayuan area, Hunan[J]. China Resources Comprehensive Utilization, 2021, 39(3): 98-100. (in Chinese with English abstract)
    [22] 赖嘉进, 吴世芳, 熊楚宏, 等. 湖南省花垣县民乐矿区锰矿详细勘探地质报告[R]. 湖南吉首: 湖南省地质局四○五队, 1982: 36.

    LAN J J, WU S F, XIONG C H, et al. Detailed exploration geological report of manganese ore in Minle Mining area, Huayuan County, Hunan Province[R]. Jishou, Hunan: The 405 Geological Team of Hunan Geological Bureau, 1982: 36. (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  87
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 录用日期:  2023-07-30
  • 修回日期:  2023-07-29

目录

    /

    返回文章
    返回