留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压电脉冲-水力压裂耦合过程中岩体缝间扰动规律

饶平平 宁肯 崔纪飞

饶平平,宁肯,崔纪飞. 高压电脉冲-水力压裂耦合过程中岩体缝间扰动规律[J]. 地质科技通报,2025,44(1):90-100 doi: 10.19509/j.cnki.dzkq.tb20230364
引用本文: 饶平平,宁肯,崔纪飞. 高压电脉冲-水力压裂耦合过程中岩体缝间扰动规律[J]. 地质科技通报,2025,44(1):90-100 doi: 10.19509/j.cnki.dzkq.tb20230364
RAO Pingping,NING Ken,CUI Jifei. Disturbance law between rock fractures in the coupling process of high-voltage electric pulse and hydraulic fracturing[J]. Bulletin of Geological Science and Technology,2025,44(1):90-100 doi: 10.19509/j.cnki.dzkq.tb20230364
Citation: RAO Pingping,NING Ken,CUI Jifei. Disturbance law between rock fractures in the coupling process of high-voltage electric pulse and hydraulic fracturing[J]. Bulletin of Geological Science and Technology,2025,44(1):90-100 doi: 10.19509/j.cnki.dzkq.tb20230364

高压电脉冲-水力压裂耦合过程中岩体缝间扰动规律

doi: 10.19509/j.cnki.dzkq.tb20230364
基金项目: 国家自然科学基金项目(42077435)
详细信息
    作者简介:

    饶平平:E-mail:raopingping@usst.edu.cn

    通讯作者:

    E-mail:ningken2021@163.com

  • 中图分类号: TU42

Disturbance law between rock fractures in the coupling process of high-voltage electric pulse and hydraulic fracturing

More Information
  • 摘要:

    为了研究高压电脉冲-水力压裂岩体缝间扰动及裂缝扩展规律,以弹性力学、断裂力学、损伤力学为基础,采用扩展有限元法对高压电脉冲在水压(3 MPa)下的放电过程进行了数值计算,并对岩体裂缝进行了分析。结果表明:在5 kV放电电压下,高压电脉冲-水力压裂较传统水力压裂的最大裂缝宽度提高了35%,且随着放电电压增大,裂缝的最大裂缝宽度和起裂压力均增大,缝间干扰能力增强。此外,岩体中缝间干扰还与主应力差、注入速率、裂缝数量有关。具体而言,在相同的电压下,注入速率越快,裂缝长度越长,应力阴影效果越明显,缝间扰动越强;在注入速率相同的情况下,主应力差越大,裂缝朝最大主应力延伸的方向性越明显,起裂压力和最大裂缝宽度均随着主应力差的增大而减小;多个裂缝分支可以同时扩展并相互交叉,3条裂缝的应力阴影区比2条裂缝的影响区范围更广。研究结果可以为水下高压电脉冲压裂和煤层增透技术的研究提供理论依据和研究方法,并且为实际工程人为控制裂缝奠定一定基础。

     

  • 图 1  激波形成示意图

    Figure 1.  Schematic diagram of shock formation

    图 2  激波超压时程曲线

    AC段. 正压区;CD段. 负压区;AB段. 升压区;BC段. 降压区;Pm. 峰值压力;Tt. AB段对应的波前时间;Td. BC段对应的下降时间;Tw. 正负压转换作用时间;P0. 静水压力;P. 压力;t. 时间

    Figure 2.  Shock overpressure time history curve

    图 3  裂缝扩展示意图(σhσHσαταα的含义见正文,下同)

    Figure 3.  Schematic diagram of crack propagation

    图 4  计算模型

    Figure 4.  Calculation model

    图 5  水激波加载的幅值曲线

    Figure 5.  Amplitude curve of water shock loading

    图 6  裂缝扩展路径模拟结果对比(a. 本研究;b. 文献[11])

    Figure 6.  Comparison of the simulation results of the crack growth path

    图 7  数值验证结果

    Figure 7.  Numerical verification results

    图 8  3 MPa(a)和3 MPa+5 kV(b)压裂效果图

    Figure 8.  3 MPa (a) and 3 MPa+5 kV (b) fracturing effect diagrams

    图 9  不同电压下的最大裂缝宽度与起裂压力

    Figure 9.  Maximum joint width and cracking pressure at different voltages

    图 10  不同电压下的高压电脉冲水力压裂裂缝扩展图

    Figure 10.  High-voltage electric pulse hydraulic fracturing fracture growth diagram at different voltages

    图 11  不同电压下的初始起裂压力(a)和最大裂缝宽度(b)

    Figure 11.  Burst pressure (a) and maximum seam width (b) at different voltages

    图 12  不同主应力差下的最大裂缝宽度与起裂压力

    Figure 12.  Maximum joint width and cracking pressure under different principal stress differences

    图 13  不同主应力差的裂缝扩展图

    Figure 13.  Crack propagation diagrams in the case of different principal stress differences

    图 14  不同注入速率的裂缝应力扩展云图

    Figure 14.  Crack stress propagation curves at different injection rates

    图 15  不同裂缝数量的裂缝扩展图

    Figure 15.  Crack propagation diagram in the case of different numbers of cracks

    图 16  不同裂缝数量下的最大裂缝宽度和起裂压力

    Figure 16.  Maximum crack width and initiation pressure with different numbers of fractures

    表  1  岩样物理学参数[24]

    Table  1.   Physical parameters of the rock samples

    参数抗拉强度/MPa杨氏模量/GPa泊松比渗透系数/(m·d−1液体黏度/(Pa·s)
    数值2.598.4020.230.0010.001
    下载: 导出CSV

    表  2  方案设计

    Table  2.   Scheme design

    组别 编号 三轴围压MPa 注入速率/(m3·s−1 水压/MPa 电压/kV 裂缝数量 与最大主应力夹角/(°)
    $ {\sigma }_{{\mathrm{h}}} $ $ {\sigma }_{{\mathrm{H}}} $ $ {\sigma }_{\mathrm{z}} $
    A 1 4 5 4 0.5 3 5 3 20,45,75
    2 4 6 4 0.5 3 5 3 20,45,75
    3 4 7 4 0.5 3 5 3 20,45,75
    4 4 9 4 0.5 3 5 3 20,45,75
    B 5 4 6 4 0.5 3 2 3 20,45,75
    6 4 6 4 0.5 3 3 3 20,45,75
    7 4 6 4 0.5 3 4 3 20,45,75
    8 4 6 4 0.5 3 5 3 20,45,75
    9 4 6 4 0.5 3 6 3 20,45,75
    C 10 4 6 4 0.25 3 5 3 20,45,75
    11 4 6 4 0.5 3 5 3 20,45,75
    12 4 6 4 0.75 3 5 3 20,45,75
    D 13 4 6 4 0.5 3 5 1 75
    14 4 6 4 0.5 3 5 2 45,75
    15 4 6 4 0.5 3 5 3 20,45,75
    下载: 导出CSV
  • [1] 缪协兴,钱鸣高. 中国煤炭资源绿色开采研究现状与展望[J]. 采矿与安全工程学报,2009,26(1):1-14. doi: 10.3969/j.issn.1673-3363.2009.01.001

    MIAO X X,QIAN M G. Research on green mining of coal resources in China:Current status and future prospects[J]. Journal of Mining & Safety Engineering,2009,26(1):1-14. (in Chinese with English abstract doi: 10.3969/j.issn.1673-3363.2009.01.001
    [2] 肖一标,段隆臣,李昌平,等. 基于高压电脉冲破岩损伤模型的破岩过程研究[J]. 地质科技通报,2023,42(3):323-330.

    XIAO Y B,DUAN L C,LI C P,et al. Study on the rock-breaking process based on a high-voltage electropulse boring damage model[J]. Bulletin of Geological Science and Technology,2023,42(3):323-330. (in Chinese with English abstract
    [3] CHUNG K J,LE S G,HWANG Y S,et al. Modeling of pulsed spark discharge in water and its application to well cleaning[J]. Current Applied Physics,2015,15(19):977-986.
    [4] ZHU L,HE Z H,LI P,et al. The research on the pulsed arc electrohydraulic discharge and its application in treatment of the ballast water[J]. Journal of Electrostatics,2013,71:728-733. doi: 10.1016/j.elstat.2013.04.003
    [5] REN F,GE L,STELMASHUK V,et al. Characterisation and evaluation of shockwave generation in water conditions for coal fracturing[J]. Journal of Natural Gas Science and Engineering,2019,66:255-264. doi: 10.1016/j.jngse.2019.04.005
    [6] RAMANDL H L,MOATAGHIM P,ARMSTRON R T,et al. Porosity and permeability characterization of coal:A micro-computed tomography study[J]. International Journal of Coal Geology,2016,154/155:57-68. doi: 10.1016/j.coal.2015.10.001
    [7] 闫东. 岩体内静水压下高压脉冲放电爆轰致裂基础研究[D]. 太原:太原理工大学,2017.

    YAN D. The foundational research on the high voltage pulse discharge detonation fracturing in rock mass under hydrostatic pressure[D]. Taiyuan:Taiyuan University of Technology,2017. (in Chinese with English abstract
    [8] 李恒乐,秦勇,周晓亭,等. 循环高压电脉冲作用下煤体微裂隙发育特征及其煤岩学控制[J]. 煤田地质与勘探,2021,49(4):105-113. doi: 10.3969/j.issn.1001-1986.2021.04.013

    LI H L,QIN Y,ZHOU X T,et al. Development characteristics of coal microfracture and coal petrology control under cyclic high voltage electrical pulse[J]. Coal Geology & Exploration,2021,49(4):105-113. (in Chinese with English abstract doi: 10.3969/j.issn.1001-1986.2021.04.013
    [9] 卢红奇,聂百胜,陈秀娟,等. 基于液电效应的高压电脉冲对煤体致裂实验研究[J]. 中国安全生产科学技术,2020,16(10):83-88.

    LU H Q,NIE B S,CHEN X J,et al. Experimental research on coal crushing by using high-voltage electrical pulse based on electrohydraulic effect[J]. Journal of Safety Science and Technology,2020,16(10):83-88. (in Chinese with English abstract
    [10] 赵胤翔. 三轴压力下水激波致裂不同结构煤岩体规律研究[D]. 太原:太原理工大学,2021.

    ZHAO Y X. Study on the law of coal rock mass with different structure caused by water shock wave under triaxial pressure[D]. Taiyuan:Taiyuan University of Technology,2021. (in Chinese with English abstract
    [11] BAO X K,GUO J Y,LIU Y,et al. Damage characteristics and laws of micro-crack of under water electric pulse fracturing coal-rock mass[J]. Theoretical and Applied Fracture Mechanics,2021,111:102853. doi: 10.1016/j.tafmec.2020.102853
    [12] 贾少华,赵金昌,尹志强,等. 基于高压电脉冲煤体增透的水激波波前时间变化规律研究[J]. 太原理工大学学报,2015,46(6):680-684.

    JIA S H,ZHAO J C,YIN Z Q,et al. Study on the change law of water shock wave wavefront time based on high-voltage pulse coal permeability[J]. Journal of Taiyuan University of Technology,2015,46(6):680-684. (in Chinese with English abstract
    [13] 李培培. 钻孔注水高压电脉冲致裂瓦斯抽放技术基础研究[D]. 太原:太原理工大学,2010.

    LI P P. Drilling water injection pressure impulses crack gas drainage technology research[D]. Taiyuan:Taiyuan University of Technology,2010. (in Chinese with English abstract
    [14] 李春明,赵胤翔,赵金昌,等. 预制裂纹对水中高压电脉冲致裂煤岩体的影响[J]. 煤矿安全,2021,52(7):27-32.

    LI C M,ZHAO Y X,ZHAO J C,et al. Effect of pre-crack on coal and rock mass induced by high voltage electric pulse in water[J]. Safety in Coal Mines,2021,52(7):27-32. (in Chinese with English abstract
    [15] 尤特金 Л А Ю. 液电效应 [M]. 北京:科学出版社,1962.

    YUTKIN Л А Ю. Hydroelectric effect [M]. Beijing:Science Press,1962. (in Chinese)
    [16] 李和平,于达仁,孙文廷,等. 大气压放电等离子体研究进展综述[J]. 高电压技术,2016,42(12):3697-3727.

    LI H P,YU D R,SUN W T,et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering,2016,42(12):3697-3727. (in Chinese with English abstract
    [17] TOUYA G,REESS T,P´EECASTAING L,et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves[J]. Journal of Physics D(Applied Physics),2006,39(24):5236-5244. doi: 10.1088/0022-3727/39/24/021
    [18] 郭军宇. 液电效应下页岩裂纹演化机理及特征研究[D]. 内蒙古 包头:内蒙古科技大学,2021.

    GUO J Y. Research on fracture mechanism and crack characteristics of shale under liquid-electric effect[D]. Baotou,Inner Mongolia:Inner Mongolia University of Science and Technology,2021. (in Chinese with English abstract
    [19] YAN D,BIAN D C,ZHAO J C,et al. Study of the electrical characteristics,shock-wave pressure characteristics and attenuation law based on pulse discharge in water[J]. Shock and Vibration,2016(1):1-11.
    [20] 简文星,潘永亮,李林均,等. 水压力作用下三峡库区侏罗系软岩裂纹扩展规律及力学机制[J]. 地质科技通报,2023,42(3):1-8.

    JIAN W X,PAN Y L,LI L J,et al. Crack propagation law and mechanical mechanism of Jurassic soft rock in the Three Gorges Reservoir area under water pressure[J]. Bulletin of Geological Science and Technology,2023,42(3):1-8. (in Chinese with English abstract
    [21] QIN M Q,YANG D S. Numerical investigation of hydraulic fracture height growth in layered rock based on peridynamics[J]. Theoretical and Applied Fracture Mechanics,2023,125:103885. doi: 10.1016/j.tafmec.2023.103885
    [22] LEI Q H,DOONECHALY N G,TSANG C F. Modelling fluid injection-induced fracture activation,damage growth,seismicity occurrence and connectivity change in naturally fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2021,138:104598. doi: 10.1016/j.ijrmms.2020.104598
    [23] 石路杨,余天堂. 多裂纹扩展的扩展有限元法分析[J]. 岩土力学,2014,35(1):263-272.

    SHI L Y,YU T T. Analysis of multiple crack growth using extended finite element method[J]. Rock and Soil Mechanics,2014,35(1):263-272. (in Chinese with English abstract
    [24] 姜浒,陈勉,张广清,等. 定向射孔对水力裂缝起裂与延伸的影响[J]. 岩石力学与工程学报,2009,28(7):1321-1326. doi: 10.3321/j.issn:1000-6915.2009.07.004

    JIANG X,CHEN M,ZHANG G Q,et al. Impact of oriented perforation on hydraulic fracture initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1321-1326. (in Chinese with English abstract doi: 10.3321/j.issn:1000-6915.2009.07.004
    [25] 鲍先凯. 高压电脉冲水压压裂煤体机理及实验研究[D]. 太原:太原理工大学,2018.

    BAO X K. The study on mechanism and experiment of hydraulic fracturing coal in high voltage electric pulse[D]. Taiyuan:Taiyuan University of Technology,2018. (in Chinese with English abstract
    [26] 尹志强. 水中高压脉冲放电的液电特性及煤体致裂效果研究[D]. 太原:太原理工大学,2016.

    YIN Z Q. Research on the electro-hydraulic effect and coal crack effect of underwater high voltage discharge[D]. Taiyuan:Taiyuan University of Technology,2016. (in Chinese with English abstract
    [27] 曾青冬,姚军,孙致学. 页岩气藏压裂缝网扩展数值模拟[J]. 力学学报,2015,47(6):994-999.

    ZENG Q D,YAO J,SUN Z X. Numerical simulation of fracture network expansion in shale gas reservoirs[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(6):994-999. (in Chinese with English abstract
    [28] 周健,陈勉,金衍,等. 多裂缝储层水力裂缝扩展机理试验[J]. 中国石油大学学报(自然科学版),2008,32(4):51-54. doi: 10.3321/j.issn:1673-5005.2008.04.011

    ZHOU J,CHEN M,JIN Y,et al. Experiment of propagation mechanism of hydraulic fracture in multi-fracture reservoir[J]. Journal of China University of Petroleum,2008,32(4):51-54. (in Chinese with English abstract doi: 10.3321/j.issn:1673-5005.2008.04.011
    [29] 黄超. 水平井分段压裂多裂缝扩展规律研究[D]. 成都:西南石油大学,2017.

    HUANG C. Research on multiple fractures propagation in horizontal well with multi-stage hydrautlic fracturing[D]. Chengdu:Southwest Petroleum University,2017. (in Chinese with English abstract
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  216
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 录用日期:  2023-10-17
  • 修回日期:  2023-10-15
  • 网络出版日期:  2024-01-20

目录

    /

    返回文章
    返回