留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鸟粪石沉淀法的富磷地下水磷回收的可行性与影响因素

陈惟希 杜尧 谢先军 邓娅敏

陈惟希,杜尧,谢先军,等. 基于鸟粪石沉淀法的富磷地下水磷回收的可行性与影响因素[J]. 地质科技通报,2025,44(1):274-284 doi: 10.19509/j.cnki.dzkq.tb20230379
引用本文: 陈惟希,杜尧,谢先军,等. 基于鸟粪石沉淀法的富磷地下水磷回收的可行性与影响因素[J]. 地质科技通报,2025,44(1):274-284 doi: 10.19509/j.cnki.dzkq.tb20230379
CHEN Weixi,DU Yao,XIE Xianjun,et al. Exploring the feasibility and influencing factors of phosphorus recovery from phosphorus-rich groundwater based on struvite precipitation methods[J]. Bulletin of Geological Science and Technology,2025,44(1):274-284 doi: 10.19509/j.cnki.dzkq.tb20230379
Citation: CHEN Weixi,DU Yao,XIE Xianjun,et al. Exploring the feasibility and influencing factors of phosphorus recovery from phosphorus-rich groundwater based on struvite precipitation methods[J]. Bulletin of Geological Science and Technology,2025,44(1):274-284 doi: 10.19509/j.cnki.dzkq.tb20230379

基于鸟粪石沉淀法的富磷地下水磷回收的可行性与影响因素

doi: 10.19509/j.cnki.dzkq.tb20230379
基金项目: 国家重点研发计划项目(2022YFC3703700)
详细信息
    作者简介:

    陈惟希:E-mail:wish00312@163.com

    通讯作者:

    E-mail:yaodu@cug.edu.com

  • 中图分类号: X523

Exploring the feasibility and influencing factors of phosphorus recovery from phosphorus-rich groundwater based on struvite precipitation methods

More Information
  • 摘要:

    磷供应短缺和水体磷污染已成为全球性危机。鸟粪石沉淀法是最为经济有效的磷回收方法,其磷的回收率可以达到95%以上,目前已广泛应用于污水中磷的资源化。天然富磷地下水近年来备受关注,但目前尚未有基于鸟粪石法开展富磷地下水中磷回收的报道。探讨了在富磷、富钙、富铁、富黄腐酸(FA)地下水中利用鸟粪石法在pH值为9.5的环境下回收磷的影响因素与可行性。利用X射线衍射(XRD)、扫描电镜(SEM)和傅里叶变换红外光谱(FTIR)等方法对人工合成地下水与天然地下水开展了研究。结果表明,随着钙浓度增加沉淀中鸟粪石纯度迅速下降到10%以下,XRD图谱中鸟粪石的峰消失,SEM图谱中鸟粪石表面被无定形磷酸钙覆盖,单独添加铁和黄腐酸后鸟粪石的纯度变化较小,SEM图谱显示固体表面出现絮状沉淀。影响因子共存条件下得到的鸟粪石沉淀X射线光谱显示出无规则峰值,傅里叶红外光谱图分别在波数453,720,750,16081679 cm−1处的峰消失,表明高浓度的钙能显著抑制地下水中鸟粪石的形成,铁和黄腐酸对鸟粪石形成的影响相对较弱;研究因子的共存会加剧抑制鸟粪石的形成,3个因子共同决定了鸟粪石能否在地下水中有效沉淀。本研究识别了鸟粪石沉淀法回收地下水中磷的影响因素与机制,研究结果将有助于富磷地下水中磷回收策略的制定。

     

  • 图 1  磷酸盐去除率、氨氮去除率与溶液Mg/P比值(a)和pH值(b)的关系

    Figure 1.  Relationship between the removal rates of phosphate and ammonia nitrogen and the Mg/P ratio (a) and pH (b) of solutions

    图 2  pH=9.5时各影响因素的XRD图谱

    a. FA;b. Fe3 +;c. Ca2 +;d. FA与Fe3+、Ca2+耦合;e. Fe3+与FA、Ca2+耦合;f. Ca2+、FA、Fe3+耦合;g. FA、Fe3+和Ca2+共同耦合;h. 天然地下水

    Figure 2.  XRD patterns for each group of influencing factors obtained at pH 9.5

    图 3  在pH =9.5下获得的影响因素的SEM图像

    a, b. 鸟粪石;c, d. FA ; e,f. Fe3+;g,h. Ca2+

    Figure 3.  SEM images of the influencing factors obtained at pH 9.5

    图 4  3个影响因素在pH=9.5时的XRD衍射峰强度对比

    Figure 4.  Comparison of XRD peak intensites at pH 9.5 for the three influencing factors

    图 5  在pH =9.5条件下影响因素耦合后析出相的SEM图像

    a,b. FA与Fe3+耦合;c,d. FA与Ca2+耦合;e,f. Ca2+与Fe3+耦合;g. FA、Fe3+和Ca2+耦合;h. 天然地下水

    Figure 5.  SEM images of the precipitates obtained after coupling of influencing factors at pH 9.5

    图 6  FA-Fe、FA-Ca、Fe-Ca、FA-Fe-Ca耦合和纯净鸟粪石的FTIR光谱

    Figure 6.  FTIR spectra of FA coupled with Fe, FA coupled with Ca, Fe coupled with Ca, FA-Fe-Ca coupled, and pure struvite

    表  1  不同干扰因素、各干扰因素耦合及地下水实际情况下产生的沉淀物的纯度和粒径

    Table  1.   Purity and particle size of precipitates generated in the presence of different interfering factors, combination of interfering factors, and actual groundwater

    干扰因素 鸟粪石纯度/% 鸟粪石粒径/nm
    Ca/Mg 1:5 83.45 51.10
    1:3 73.88 57.59
    1∶1.2 52.22 54.52
    2∶1 14.52 57.52
    Fe 10 mg/L 91.50 50.04
    50 mg/L 77.52 48.27
    100 mg/L 44.10 50.65
    FA 5 mg/L 74.68 50.52
    20 mg/L 78.96 51.12
    50 mg/L 72.98 62.43
    FA-Fe 耦合 55.98 50.52
    FA-Ca 耦合 48.52 60.10
    Ca-Fe耦合 43.56 62.50
    FA-Fe-Ca 耦合 16.42 63.26
    天然地下水 88.0 69.50
    下载: 导出CSV
  • [1] 王焰新,杜尧,邓娅敏,等,湖底地下水排泄与湖泊水质演化[J]. 地质科技通报,2022,41(1):1-10.

    WANG Y X,DU Y,DENG Y M,et al. Groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology,2022,41(1):1-10. (in Chinese with English abstract
    [2] MAROUSEK J,GAVUROVA B. Recovering phosphorous from biogas fermentation residues indicates promising economic results[J]. Chemosphere,2022,291:133008.
    [3] LI X S,WANG Y M,HU Y J,et al. Numerical investigation on stratum and surface deformation in underground phosphorite mining under different mining methods[J]. Frontiers in Earth Science,2022,10:831856.
    [4] XUE Q,HE X Y,SACHS S B ,et al. The current phosphate recycling situation in China and Germany:A comparative review[J]. Frontiers of Agricultural Science and Engineering,2019,6(4):403-418.
    [5] TARTAKOVSKY D,STERN E,BRODAY D M. Indirect estimation of emission factors for phosphate surface mining using air dispersion modeling[J]. Science of the Total Environment,2016, 556:179-188.
    [6] ELSER J,BENNETT E. A broken biogeochemical cycle[J]. Nature,2011, 478:29-31.
    [7] SMITH V H,TILMAN G D,NEKOLA J C. Eutrophication:Impacts of excess nutrient inputs on freshwater,marine,and terrestrial ecosystems[J]. Environment Pollution,1999,100(1/3):179-196.
    [8] LI G H,VAN ITTERSUM M K,LEFFELAAR P A,et al. A multi-level analysis of China's phosphorus flows to identify options for improved management in agriculture[J]. Agricultural Systems,2016,144:87-100. doi: 10.1016/j.agsy.2016.01.006
    [9] GILBERT N. Environment:The disappearing nutrient[J]. Nature , 2009, 461: 716-718.
    [10] SCHOLZ R W ,ULRICH A E,EILITTA M,et al. Sustainable use of phosphorus:A finite resource[J]. Science of the Total Environment,2013, 461:799-803.
    [11] CORDELL D,ROSEMARIN A,SCHRODER J J,et al. Towards global phosphorus security:A systems framework for phosphorus recovery and reuse options[J]. Chemosphere,2011,84(6):747-758. doi: 10.1016/j.chemosphere.2011.02.032
    [12] HAO X D,WANG C C,VAN LOOSDRECHT M C M,et al. Looking beyond struvite for P-recovery[J]. Environmental Science & Technology,2013, 47 (10):4965-4966.
    [13] SASABUCHI I T M,KRIEGER K S,NUNES R S,et al. Sustainability in phosphorus use:A bibliographic review focusing on the current situation in the state of so paulo,Brazil[J]. Quimica Nova,2023,46(2):185-198.
    [14] MAROUSEK J,KOLAR L,STRUNECKY O,et al. Modified biochars present an economic challenge to phosphate management in wastewater treatment plants[J]. Journal of Cleaner Production,2020,272(8):123015.
    [15] GUTIERREZ F,KINNEY K A,KATZ L E. Phosphorus speciation in municipal wastewater solids and implications for phosphorus recovery[J]. Environmental Engineering Science,2020,37(5):316-327. doi: 10.1089/ees.2019.0360
    [16] HONG S K D,WINKLER M K H,WANG Z W,et al. Integration of EBPR with mainstream anammox process to treat real municipal wastewater:Process performance and microbiology[J]. Water Research,2023,233:119758.
    [17] Kim K W,Kim Y J,Kim I T,et al. Electrochemical conversion characteristics of ammonia to nitrogen[J]. Water Research ,2006, 40(7):1431-1441.
    [18] JEONG B Y,SONG S H,BAEK K W,et al. Preparation and properties of heterogeneous cation exchange membrane for recovery of ammonium ion from waste water[J]. Polymer-Korea,2006,30(6):486-491.
    [19] MASSEY M S,DAVIS J G,SHEFFIELD R E,et al. In struvite production from dairy wastewater and its potential as a fertilizer for organic production in calcareous soils[C]//Anon. International Symposium on Air Quality and Waste Management for Agriculture. [S. l. ]:[S. n. ],2007.
    [20] MASINDI V,FOSSO-KANKEU E,MAMAKOA E,et al. Emerging remediation potentiality of struvite developed from municipal wastewater for the treatment of acid mine drainage[J]. Environmental Research,2022,210(15):112944.
    [21] STAVKOVA J,MAROUSEK J. Novel sorbent shows promising financial results on P recovery from sludge water[J]. Chemosphere,2021,276(8):130097.
    [22] SUN H J,MOHAMMED A N,LIU Y. Phosphorus recovery from source-diverted blackwater through struvite precipitation[J]. Science of the Total Environment ,2020, 743:140747.
    [23] MAYER B K,BAKER L A,BOYER T H,et al. Total value of phosphorus recovery[J]. Environmental Science & Technology,2016,50(13):6606-6620.
    [24] RAHMAN M M,SALLEH M A M,RASHID U,et al. Production of slow release crystal fertilizer from wastewaters through struvite crystallization :A review[J]. Arabian Journal of Chemistry,2014,7 (1):139-155.
    [25] RAHAMAN M S,MAVINIC D S. Recovering nutrients from wastewater treatment plants through struvite crystallization:CFD modelling of the hydrodynamics of UBC MAP fluidized-bed crystallizer[J]. Water Science and Technology,2009,59(10):1887-1892. doi: 10.2166/wst.2009.214
    [26] TALBOYS P J,HEPPEL J,ROOSE T,HEALEY J R,et al. Struvite:A slow-release fertiliser for sustainable phosphorus management[J]. Plant and Soil ,2016, 401 (1/2):109-123.
    [27] RAHMAN M M,LIU Y,KWAG J H,et al. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil[J]. Journal of Hazardous Materials,2011,186(2/3):2026-2030.
    [28] MUNCH E V,BARR K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams[J]. Water Research,2001,35(1):151-159. doi: 10.1016/S0043-1354(00)00236-0
    [29] EL DIWANI G,EL RAFIE S,EL IBIARI N N,et al. Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer[J]. Desalination , 2007, 214 (1/3):200-214.
    [30] WU Q Z,BISHOP P L. Enhancing struvite crystallization from anaerobic supernatant[J]. Journal of Environmental Engineering and Science,2004,3(1):21-29. doi: 10.1139/s03-050
    [31] KIM D,RYU H D,KIM M S,et al. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate[J]. Journal of Hazardous Materials,2007,146(1/2):81-85.
    [32] YANG H,WANG P L,CHEN A Q,et al. Prediction of phosphorus concentrations in shallow groundwater in intensive agricultural regions based on machine learning[J]. Chemosphere,2023,313(10):137126.
    [33] WARRACK J,KANG M,VON SPERBER C. Groundwater phosphorus concentrations:Global trends and links with agricultural and oil and gas activities[J]. Environmental Research Letters ,2022, 17(1):11.014014.
    [34] YU L,ROZEMEIJER J,VAN BREUKELEN B M,et al. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments:Monitoring the greater Amsterdam area[J]. Hydrology and Earth System Sciences,2018,22(1):487-508.
    [35] ZHOU J,DU Y,DENG Y M,et al. Source identification of groundwater phosphorus under different geological settings in the central Yangtze River Basin[J]. Journal of Hydrology,2022,612:13. 128169.
    [36] 冷智超,杜尧,陶艳秋,等,长江中游沿岸地下水中铵氮与磷的共存规律及其控制因素[J],地质科技通报,2022,41(1):300-308.

    LENG Z C,DU Y,TAO Y Q,et al. Coexistence of ammonium nitrogen and phosphorus in groundwater along the middle reaches of Yangtze River and its controlling factors[J],Bulletin of Geological Science and Technology,2022,41(1):300-308. (in Chinese with English abstract
    [37] NONGQWENGA N,MUCHAONYERWA P,HUGHES J,et al. Possible use of struvite as an alternative phosphate fertilizer[J]. Journal of Soil Science and Plant Nutrition ,2017, 17(3):581-593.
    [38] YAN H,SHIH K. Effects of calcium and ferric ions on struvite precipitation:A new assessment based on quantitative X-ray diffraction analysis[J]. Water Research,2016,95:310-318. doi: 10.1016/j.watres.2016.03.032
    [39] ZHOU Z,HU D,REN W,et al. Effect of humic substances on phosphorus removal by struvite precipitation[J]. Chemosphere,2015,141:94-99. doi: 10.1016/j.chemosphere.2015.06.089
    [40] WEI Q Q,CHEN J Y,ZHANG Q,et al. Insight into the effect of phosphate on ferrihydrite colloid-mediated transport of tetracycline in saturated porous media[J]. Environmental Science and Pollution Research ,2022, 29(53):80693-80704.
    [41] LI B,BOIARKINA I,YOUNG B,et al. Quantification and mitigation of the negative impact of calcium on struvite purity[J]. Advanced Powder Technology,2016,27(6):2354-2362.
    [42] TANSEL B,LUNN G,MONJE O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery:A review of magnesium-ammonia-phosphate interactions[J]. Chemosphere,2018,194:504-514. doi: 10.1016/j.chemosphere.2017.12.004
    [43] MUSTAPHA S,TIJANI J O,NDAMITSO M M,et al. Facile synthesis and characterization of TiO2 nanoparticles:X-ray peak profile analysis using Williamson-Hall and Debye-Scherrer methods[J]. International Nano Letters ,2021, 11(3):241-261.
    [44] SONG Y H,YUAN P,ZHENG B H,et al. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater[J]. Chemosphere ,2007, 69(2):319-324.
    [45] ROUFF A A. The use of TG/DSC-FT-IR to assess the effect of Cr sorption on struvite stability and composition[J]. Journal of Thermal Analysis and Calorimetry ,2012, 110(3):1217-1223.
    [46] LEI Y,SONG B N,VAN DER WEIJDEN R D,et al. Electrochemical induced calcium phosphate precipitation:Importance of local pH[J]. Environmental Science & Technology,2017,51(19):11156-11164.
    [47] HUANG H M,XU C L,ZHANG W. Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology[J]. Bioresource Technology,2011,102(3):2523-2528.
    [48] SUNDA W,HUNTSMAN S. Effect of pH,light,and temperature on Fe-EDTA chelation and Fe hydrolysis in seawater[J]. Marine Chemistry,2003,84(1/2):35-47.
    [49] MBAMBA C K,TAIT S,FLORES-ALSINA X,et al. A systematic study of multiple minerals precipitation modelling in wastewater treatment[J]. Water Research,2015,85:359-370. doi: 10.1016/j.watres.2015.08.041
    [50] LIZARRALDE I,FERNANDEZ-AREVALO T,BROUCKAERT C,et al. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models[J]. Water Research,2015,74:239-256. doi: 10.1016/j.watres.2015.01.031
    [51] PERWITASARI D S,MURYANTO S,SCHMAHL W W J,et al. A kinetic and structural analysis of the effects of Ca- and Fe ions on struvite crystal growth[J]. Solid State Sciences ,2022,134:107062.
    [52] ZHANG B,TIAN S Y,WU D L. Phosphorus harvesting from fresh human urine:A strategy of precisely recovering high-purity calcium phosphate and insights into the precipitation conversion mechanism[J]. Water Research,2022,227(11):119325.
    [53] JIANG L,ZHU J,WANG H,et al. Sorption of humic acid on Fe oxides,bacteria,and Fe oxide-bacteria composites[J]. Journal of Soils and Sediments,2014,14(8):1378-1384.
    [54] BOLEA E,GORRIZ M P,BOUBY M,et al. Multielement characterization of metal-humic substances complexation by size exclusion chromatography,asymmetrical flow field-flow fractionation,ultrafiltration and inductively coupled plasma-mass spectrometry detection:A comparative approach[J]. Journal of Chromatography A, 2006,1129(2):236-246.
    [55] BANIK N L,BUDA R A,BURGER S,et al. Speciation and interactions of plutonium with humic substances and kaolinite in aquifer systems[J]. Journal of Alloys and Compounds,2007,444:522-525.
    [56] ZUO H Y,HUANG L Q,CHU R K,et al. Reduction of structural Fe(III) in nontronite by humic substances in the absence and presence of Shewanella putrefaciens and accompanying secondary mineralization[J]. American Mineralogist,2021,106(12):1957-1970.
    [57] LIU Y T,HESTERBERG D. Phosphate bonding on noncrystalline Al/Fe-hydroxide coprecipitates[J]. Environmental Science & Technology,2011,45(15):6283-6289.
    [58] ARSLANOGLU H. Adsorption of micronutrient metal ion onto struvite to prepare slow release multielement fertilizer:Copper(II) doped-struvite[J]. Chemosphere,2019,217:393-401.
    [59] TANG Z J,HONG S K,XIAO W Z,et al. Characteristics of iron corrosion scales established under blending of ground,surface,and saline waters and their impacts on iron release in the pipe distribution system[J]. Corrosion Science,2006,48(2):322-342.
    [60] LEVSHINA S. An assessment of metal-humic complexes in river waters of the Upper Amur Basin,Russia[J]. Environ. Monit. Assessment,2018,190(1):13.
    [61] WANG J,BURKEN J G,ZHANG X,et al. Engineered struvite precipitation:Impacts of component-ion molar ratios and pH[J]. Journal of Environmental Engineering ,2005, 131(10):1433-1440.
    [62] PAN Z Q,HU M P,SHEN H,et al. Quantifying groundwater phosphorus flux to rivers in a typical agricultural watershed in eastern China[J]. Environmental Science and Pollution Research,2023,30(8):19873-19889.
    [63] LI Y P,DU Y,DENG Y M,et al. Predicting the spatial distribution of phosphorus concentration in Quaternary sedimentary aquifers using simple field parameters[J]. Applied Geochemistry,2022,142:105349.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  373
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 录用日期:  2023-09-27
  • 修回日期:  2023-09-22
  • 网络出版日期:  2023-12-17

目录

    /

    返回文章
    返回