留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环境因子优化TSES法选择负样本及其在滑坡易发性评价中的应用

崔玉龙 朱路路 徐敏 缪海波

崔玉龙, 朱路路, 徐敏, 缪海波. 基于环境因子优化TSES法选择负样本及其在滑坡易发性评价中的应用[J]. 地质科技通报, 2024, 43(3): 192-199. doi: 10.19509/j.cnki.dzkq.tb20230400
引用本文: 崔玉龙, 朱路路, 徐敏, 缪海波. 基于环境因子优化TSES法选择负样本及其在滑坡易发性评价中的应用[J]. 地质科技通报, 2024, 43(3): 192-199. doi: 10.19509/j.cnki.dzkq.tb20230400
CUI Yulong, ZHU Lulu, XU Min, MIAO Haibo. Optimizing TSES method based on the environmental factors to select negative samples and its application in landslide susceptibility evaluation[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 192-199. doi: 10.19509/j.cnki.dzkq.tb20230400
Citation: CUI Yulong, ZHU Lulu, XU Min, MIAO Haibo. Optimizing TSES method based on the environmental factors to select negative samples and its application in landslide susceptibility evaluation[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 192-199. doi: 10.19509/j.cnki.dzkq.tb20230400

基于环境因子优化TSES法选择负样本及其在滑坡易发性评价中的应用

doi: 10.19509/j.cnki.dzkq.tb20230400
基金项目: 

国家自然科学基金项目 42277136

安徽省高校自然科学优秀青年科研项目 2023AH030041

详细信息
    通讯作者:

    崔玉龙,E-mail:ylcui@aust.edu.cn

  • 中图分类号: P642.22

Optimizing TSES method based on the environmental factors to select negative samples and its application in landslide susceptibility evaluation

More Information
  • 摘要:

    滑坡易发性评价是滑坡灾害防治的重要手段之一, 而不合理的滑坡负样本会影响滑坡易发性评价, 从而影响到滑坡灾害的防治, 因此提供一种合理的负样本选取方法变得尤为关键。以西藏米林市的古滑坡为例, 选择高程、坡度、坡向、坡位、距道路距离、距断层距离、距水系距离、地形起伏度、地层岩性、土地利用类型10类环境因子, 使用Relief算法计算环境因子的贡献值并依据贡献值优化选择环境因子; 基于环境因子优化的目标空间外向化采样法(target space exteriorization sampling, 简称TSES)选择负样本, 作为性能优异的随机森林模型的输入变量; 之后结合优化的环境因子和正或负样本预测米林市的滑坡易发性, 并用混淆矩阵和ROC曲线评价构建模型的性能。为检验环境因子优化的TSES法的有效性和先进性, 采用耦合信息量法和TSES法选择滑坡负样本并构建随机森林模型, 与环境因子优化的TSES法构建的随机森林模型进行对比研究。结果表明, 环境因子优化的TSES法构建的随机森林模型的评价效果较好, 其ACC为93.7%、AUC为0.987, 均高于耦合信息量、TSES法构成的模型。环境因子优化的TSES法能够提高模型的精度, 解决多因子作为约束条件取样中因子选取的问题, 为滑坡易发性评价采集负样本提供了新的思路。

     

  • 图 1  技术路线图

    Figure 1.  Technology roadmap

    图 2  目标空间外向化采样法

    Figure 2.  Target space exteriorization sampling method

    图 3  研究区地理位置

    Figure 3.  Geographical location of the study area

    图 4  滑坡解译实例

    a.沿江的大型岩质滑坡;b.由风化引起的岩质滑坡;c.解译滑坡分布图

    Figure 4.  Examples of landslide interpretation

    图 5  影响因子分类

    a.高程;b.坡度;c.坡向;d.坡位;e.距道路距离;f.距断层距离;g.距水系距离;h.地形起伏度;i.地层岩性;j.土地利用类型

    Figure 5.  Classification of influencing factors

    图 6  影响因子贡献值

    Figure 6.  Contribution values of influencing factors

    图 7  3种采集负样本方法构成随机森林易发图

    a.耦合信息量法;b.TSES法;c.环境因子优化TSES法

    Figure 7.  Landslide susceptibility maps of random forest model by using three negative samples collecting methods

    图 8  3种采集负样本方法构成随机森林的ROC曲线

    Figure 8.  ROC curves of random forest model using three negative samples collecting methods

    表  1  影响因子数据来源

    Table  1.   Data sources of influencing factors

    影响因子 数据名称 数据来源
    高程、坡度、坡向、距水系距离、地形起伏度 12.5 m分辨率的ALOS数字高程模型(DEM) http://wwwearthdate.org
    坡位 地理空间数据云 https://www.gscloud.cn
    距道路距离 全球地理信息资源目录服务系统 https://www.webmap.cn
    距断层距离 中国活动构造图(1∶400万)
    土地利用类型 鹏城实验室 https://data.ess.tsinghua.edu.cn
    地层岩性 中国地质调查局公开的1∶50万中国地质图 http://www.ngac.org.cn
    下载: 导出CSV

    表  2  随机森林模型的混淆矩阵

    Table  2.   Confusion matrix of random forests model

    模型种类 是否为滑坡(实际) 是否为滑坡(预测) 准确率ACC/%
    耦合信息量法 340 72 88.1
    随机森林模型 26 386
    TSES法随机 365 47 79.4
    森林模型 123 289
    环境因子优化的 406 6 93.7
    TSES法随机森林模型 46 366
    下载: 导出CSV
  • [1] 许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112. doi: 10.3321/j.issn:1000-6915.2008.06.003

    XU Q, TANG M G, XU K X, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104-1112. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.06.003
    [2] 李文彦, 王喜乐. 频率比与信息量模型在黄土沟壑区滑坡易发性评价中的应用与比较[J]. 自然灾害学报, 2020, 29(4): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202004022.htm

    LI W Y, WANG X L. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region[J]. Journal of Natural Disasters, 2020, 29(4): 213-220. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202004022.htm
    [3] 许冲, 戴福初, 姚鑫, 等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2972-2981. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm

    XU C, DAI F C, YAO X, et al. Analysis of deterministic coefficient of influencing factors of Wenchuan earthquake landslide disaster based on GIS[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2972-2981. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm
    [4] 杜国梁, 张永双, 高金川, 等. 基于GIS的白龙江流域甘肃段滑坡易发性评价[J]. 地质力学学报, 2016, 22(1): 1-11. doi: 10.3969/j.issn.1006-6616.2016.01.001

    DU G L, ZHANG Y S, GAO J C, et al. Landslide susceptibility assessment based on GIS in Bailongjiang watershed, Gansu Province[J]. Journal of Geomechanics, 2016, 22(1): 1-11. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2016.01.001
    [5] 仉文岗, 何昱苇, 王鲁琦, 等. 基于水系分区的滑坡易发性机器学习分析方法: 以重庆市奉节县为例[J]. 地球科学, 2023, 48(5): 2024-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305028.htm

    ZHANG W G, HE Y W, WANG L Q, et al. Machine learning solution for landslide susceptibility based on hydrographic division: Case study of Fengjie County in Chongqing[J]. Earth Science, 2023, 48(5): 2024-2038. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305028.htm
    [6] 黄发明, 潘李含, 姚池, 等. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202109012.htm

    HUANG F M, PAN L H, YAO C, et al. Landslide susceptibility prediction modelling based on semi-supervised machine learning[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(9): 1705-1713. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202109012.htm
    [7] 黄发明, 陈彬, 毛达雄, 等. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性[J]. 地球科学, 2023, 48(5): 1696-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm

    HUANG F M, CHEN B, MAO D X, et al. Landslide susceptibility prediction modeling and interpretability based on self-screening deep learning model[J]. Earth Science, 2023, 48(5): 1696-1710. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm
    [8] 刘艳辉, 方然可, 苏永超, 等. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报, 2021, 29(1): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101013.htm

    LIU Y H, FANG R K, SU Y C, et al. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology, 2021, 29(1): 116-124. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101013.htm
    [9] CUI Y L, HU J H, ZHENG J, et al. Susceptibility assessment of landslides caused by snowmelt in a typical loess area in the Yining County, Xinjiang, China[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2022, 55(1): qjegh2021-024.
    [10] LUCCHESE L V, DE OLIVEIRA G G, PEDROLLO O C. Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks[J]. CATENA, 2021, 198: 105067. doi: 10.1016/j.catena.2020.105067
    [11] 刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10): 2034-2045. doi: 10.11947/j.AGCS.2022.20220326

    LIU J P, LIANG E J, XU S H, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2034-2045. (in Chinese with English abstract) doi: 10.11947/j.AGCS.2022.20220326
    [12] 周晓亭, 黄发明, 吴伟成, 等. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术, 2022, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm

    ZHOU X T, HUANG F M, WU W C, et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method[J]. Advanced Engineering Sciences, 2022, 54(3): 25-35. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm
    [13] LIU S L, WANG L Q, ZHANG W G, et al. A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir Area[J]. Geoscience Frontiers, 2023, 14(5): 101621. doi: 10.1016/j.gsf.2023.101621
    [14] KAVZOGLU T, SAHIN E K, COLKESEN I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression[J]. Landslides, 2014, 11(3): 425-439. doi: 10.1007/s10346-013-0391-7
    [15] 缪亚敏, 朱阿兴, 杨琳, 等. 滑坡危险度制图中一种新型的负样本采样方法[J]. 地理与地理信息科学, 2016, 32(4): 61-67. doi: 10.3969/j.issn.1672-0504.2016.04.011

    MIAO Y M, ZHU A X, YANG L, et al. A new method of pseudo absence data generation in landslide susceptibility mapping[J]. Geography and Geo-Information Science, 2016, 32(4): 61-67. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0504.2016.04.011
    [16] 吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101025.htm

    WU R Z, HU X D, MEI H B, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir Area[J]. Earth Science, 2021, 46(1): 321-330. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101025.htm
    [17] 黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报, 2022, 41(2): 79-90. doi: 10.19509/j.cnki.dzkq.2021.0087

    HUANG F M, HU S Y, YAN X Y, et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79-90. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0087
    [18] 杨灿, 刘磊磊, 张遗立, 等. 基于贝叶斯优化机器学习超参数的滑坡易发性评价[J]. 地质科技通报, 2022, 41(2): 228-238. doi: 10.19509/j.cnki.dzkq.2022.0059

    YANG C, LIU L L, ZHANG Y L, et al. Machine learning based on landslide susceptibility assessment with Bayesian optimized the hyperparameters[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 228-238. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0059
    [19] 孔嘉旭, 庄建琦, 彭建兵, 等. 基于信息量和卷积神经网络的黄土高原滑坡易发性评价[J]. 地球科学, 2023, 48(5): 1711-1729. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305004.htm

    KONG J X, ZHUANG J Q, PENG J B, et al. Evaluation of landslide susceptibility in Chinese Loess Plateau based on IV-RF and IV-CNN coupling models[J]. Earth Science, 2023, 48(5): 1711-1729. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305004.htm
    [20] CAI H M, NG M. Feature weighting by RELIEF based on local hyperplane approximation[C]//Anon. Advances in Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer, 2012: 335-346.
    [21] KIRA K, RENDELL L A. The feature selection problem: Traditional methods and a new algorithm[C]//Anon. Proceedings of the Tenth National Conference on Artificial Intelligence. America, California: Aaai, 1992: 129-134.
    [22] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. doi: 10.1023/A:1010933404324
    [23] 杨硕, 李德营, 严亮轩, 等. 基于随机森林模型的乌江高陡岸坡滑坡地质灾害易发性评价[J]. 安全与环境工程, 2021, 28(4): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202104019.htm

    YANG S, LI D Y, YAN L X, et al. Landslide susceptibility assessment in high and steep bank slopes along Wujiang River based on random forest model[J]. Safety and Environmental Engineering, 2021, 28(4): 131-138. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202104019.htm
    [24] 郑迎凯, 陈建国, 王成彬, 等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J]. 地质科技通报, 2020, 39(6): 131-144. doi: 10.19509/j.cnki.dzkq.2020.0616

    ZHENG Y K, CHEN J G, WANG C B, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi City, Yunnan Province[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 131-144. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0616
    [25] 王珂, 郭长宝, 马施民, 等. 基于证据权模型的川西鲜水河断裂带滑坡易发性评价[J]. 现代地质, 2016, 30(3): 705-715. doi: 10.3969/j.issn.1000-8527.2016.03.022

    WANG K, GUO C B, MA S M, et al. Landslide susceptibility evaluation based on weight-of-evidence modeling in the Xianshuihe fault zone, East Tibetan Plateau[J]. Geoscience, 2016, 30(3): 705-715. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2016.03.022
    [26] DU G L, ZHANG Y S, YANG Z H, et al. Estimation of seismic landslide hazard in the eastern Himalayan syntaxis region of Tibetan Plateau[J]. Acta Geologica Sinica-English Edition, 2017, 91(2): 658-668. doi: 10.1111/1755-6724.13124
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  352
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 录用日期:  2023-09-08
  • 修回日期:  2023-09-07

目录

    /

    返回文章
    返回