留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鲁北馆陶组热储尾水回灌化学堵塞规律

陶维昱 郑君 窦斌 田红 赖孝天 张晗

陶维昱,郑君,窦斌,等. 鲁北馆陶组热储尾水回灌化学堵塞规律[J]. 地质科技通报,2025,44(1):229-240 doi: 10.19509/j.cnki.dzkq.tb20230433
引用本文: 陶维昱,郑君,窦斌,等. 鲁北馆陶组热储尾水回灌化学堵塞规律[J]. 地质科技通报,2025,44(1):229-240 doi: 10.19509/j.cnki.dzkq.tb20230433
TAO Weiyu,ZHENG Jun,DOU Bin,et al. Chemical clogging pattern of hot reservoir tailwater recharge in the Guantao Formation, northern Shandong, China[J]. Bulletin of Geological Science and Technology,2025,44(1):229-240 doi: 10.19509/j.cnki.dzkq.tb20230433
Citation: TAO Weiyu,ZHENG Jun,DOU Bin,et al. Chemical clogging pattern of hot reservoir tailwater recharge in the Guantao Formation, northern Shandong, China[J]. Bulletin of Geological Science and Technology,2025,44(1):229-240 doi: 10.19509/j.cnki.dzkq.tb20230433

鲁北馆陶组热储尾水回灌化学堵塞规律

doi: 10.19509/j.cnki.dzkq.tb20230433
基金项目: 自然资源部深部地热资源重点实验室开放基金项目“基于小波频谱分析的干热岩粗糙裂隙渗流传热机理及热采性能研究”(KLDGR2022K01);岩土钻掘与防护教育部工程研究中心开放基金项目“粗糙面形貌特征对热储裂隙渗流传热影响机制研究”(202301);河南省重点研发专项(231111320800);中国地质大学(武汉)中央高校基本科研业务费资助项目(2024XLB79)
详细信息
    作者简介:

    陶维昱:E-mail:771087729@qq.com

    通讯作者:

    E-mail:junzheng@cug.edu.cn

  • 中图分类号: P314.1;X13

Chemical clogging pattern of hot reservoir tailwater recharge in the Guantao Formation, northern Shandong, China

More Information
  • 摘要:

    地热尾水回灌是实现地热能绿色环保可持续利用的关键,但在地热尾水回灌过程中产生的堵塞问题已成为亟待攻克的难题,严重制约了砂岩热储的开发利用。为了更好地了解不同温度和时间对水化学的影响,以鲁北馆陶组砂岩热储为研究对象,利用高温高压渗流溶蚀实验平台,分别对岩样于25,45,65℃温度下开展了为期100 h的砂岩热储回灌实验,探究了回灌过程中尾水的离子浓度和pH值的演化规律,揭示了砂岩热储尾水回灌中化学堵塞过程和机理。研究结果表明,随着温度的升高,Na+浓度逐渐上升,而Ca2+和Mg2+浓度稳步下降,且随着回灌时间的延长或温度的升高,Ca2+和Mg2+浓度的减少量逐渐增加。在65℃温度下,堵塞主要由Ca2+和Mg2+与重碳酸根和碳酸根发生反应所生成的沉淀造成,因此Ca2+和Mg2+的浓度与岩石样品的渗透率和化学堵塞率呈正相关。温度越高,化学堵塞程度越高,且快速增长阶段和快速下降阶段时间越久,化学反应越强烈,化学堵塞越严重。在实际工程中,可以利用降低回灌尾水的温度,或者通过在回灌前降低尾水的pH值,降低尾水中的Ca2+、Mg2+和HCO3浓度来减轻化学堵塞的影响。

     

  • 图 1  回灌实验所用岩样(a)和地热井尾水样品(b)图

    Figure 1.  Rock samples (a) and geothermal well brine samples (b) used in the reinjection experiment

    图 2  岩样黏土矿物衍射图谱

    Figure 2.  X-ray diffraction patterns of clay minerals in rock samples

    图 3  高温高压岩心流动仪

    Figure 3.  High-temperature and high-pressure rock core flow apparatus

    图 4  评价参数示意图(图中物理量含义见正文)

    Figure 4.  Schematic diagram of the evaluation parameters

    图 5  pH值(a)、pH值变化量(b)随时间变化

    Figure 5.  Changes in pH over time(a), change in PH variation over time (b)

    图 6  Na+质量浓度 (a)、Na+质量浓度变化量 (b) 随时间变化

    Figure 6.  Changes in Na+ concentration over time (a), changes in Na+ concentration variation over time (b)

    图 7  K+质量浓度 (a)、K+质量浓度变化量 (b) 随时间变化

    Figure 7.  Changes in K+ concentration over time (a), changes in K+ concentration variation over time (b)

    图 8  Ca2+质量浓度 (a)、Ca2+质量浓度变化量 (a) 随时间变化

    Figure 8.  Changes in Ca2+ concentration over time (a), changes in Ca2+ concentration variation over time (b)

    图 9  Mg2+质量浓度 (a)、Mg2+质量浓度变化量 (b) 随时间变化

    Figure 9.  Changes in Mg2+ concentraction over time (a), changes in Mg2+ concentraction variation over time (b)

    图 10  Cl质量浓度 (a)、Cl质量浓度变化量 (b) 随时间变化

    Figure 10.  Changes in Cl concentraction over time (a), changes in Cl concentraction variation over time (b)

    图 11  SO42−质量浓度 (a)、SO42−质量浓度变化量 (b) 随时间变化

    Figure 11.  Changes in SO42− concentraction over time (a), changes in SO42− concentraction variation over time (b)

    图 12  Na+ (a)、K+ (b)、Ca2+ (c)、Mg2+ (d)、Cl (e)、SO42− (f) 质量浓度变化量随着温度变化

    Figure 12.  Variations of Na+ (a), K+ (b), Ca2+ (c), Mg2+ (d), Cl (e), SO42− (f) concentration with termperature

    图 13  pH变化值随温度变化

    Figure 13.  Changes in pH variation with temperature

    表  1  岩样XRD分析结果

    Table  1.   XRD analysis results of the rock samples

    矿物成分质量分数/%黏土成分质量分数/%黏土矿物占比/%
    钠长石32.49伊/蒙混层9.8561
    钾长石24.62蒙脱石3.8824
    石英24.26高岭石1.7811
    透闪石2.47伊利石0.654
    黏土矿物16.16
    下载: 导出CSV

    表  2  实验条件

    Table  2.   Experimental conditions

    围压/MPa 流速/(mL·min−1) 回灌时间/h 流体介质 温度/℃
    10 0.5 100 去离子蒸馏水 25
    回灌尾水 25
    回灌尾水 35
    回灌尾水 45
    回灌尾水 55
    回灌尾水 65
    下载: 导出CSV

    表  3  各组岩样尺寸及密度参数平均值

    Table  3.   Average values of size and density parameters for each group of rock samples

    参数 去离子水
    25℃
    尾水回灌25℃ 尾水回灌35℃ 尾水回灌45℃ 尾水回灌55℃ 尾水回灌65℃
    直径D/cm 2.501 2.517 2.513 2.523 2.521 2.519
    长度L/cm 4.985 4.987 4.988 4.992 4.995 4.989
    质量m/g 41.911 42.072 43.453 43.625 42.122 42.521
    横截面积
    A/cm2
    4.912 4.976 4.959 4.999 4.991 4.983
    体积V/cm3 24.486 24.815 24.735 24.957 24.930 24.860
    密度ρ/
    (g·cm−3
    1.712 1.695 1.757 1.748 1.689 1.710
    下载: 导出CSV

    表  4  25℃下尾水回灌组相关性

    Table  4.   Correlation between ions in the tailwater reinjection group at 25°C

    皮尔逊相关性 Na+ K+ Ca2+ Mg2+ Cl SO42− pH
    Na+ 1
    K+ 0.043 1
    Ca2+ −0.108 0.002 1
    Mg2+ 0.864** 0.374 0.220 1
    Cl −0.252 −0.654 0.508 −0.326 1
    SO42− −0.187 −0.734* 0.039 −0.425 0.848** 1
    pH −0.021 −0.337 −0.773* −0.368 −0.408 −0.048 1
    kc 0.728 0.065 0.952** 0.763* 0.586 0.110 −0.880**
    $ {{k}}_{{{\mathrm{c}}}}{'} $ 0.729 0.064 0.952** 0.762* 0.587 0.110 −0.880**
    C 0.820* −0.151 0.923** 0.611 0.664 0.168 −0.728
    Ch −0.774* 0.087 −0.812* −0.536 −0.759* −0.376 0.810*
    注:**. 在 0.01 级别(双尾),相关性极显著;*. 在 0.05 级别(双尾),相关性显著,kckc',CCh的含义见正文,下同
    下载: 导出CSV

    表  5  45℃下尾水回灌组相关性

    Table  5.   Correlation between ions in the tailwater reinjection group at 45°C

    皮尔逊相关性 Na+ K+ Ca2+ Mg2+ Cl SO42− pH
    Na+ 1
    K+ −0.378 1
    Ca2+ −0.047 0.683 1
    Mg2+ 0.658 0.210 0.612 1
    Cl −0.434 0.818* 0.549 −0.045 1
    SO42− −0.454 0.843** 0.496 −0.088 0.993** 1
    pH 0.343 −0.315 −0.304 0.255 −0.787* −0.737* 1
    kc −0.359 0.593 0.968** 0.993** 0.411 0.363 −0.188
    $ {{k}}_{{{\mathrm{c}}}}{'} $ −0.359 0.593 0.968** 0.993** 0.411 0.363 −0.188
    C −0.261 0.558 0.973** 0.931** 0.508 0.446 −0.413
    Ch 0.358 −0.740 −0.991** −0.898** −0.681 −0.639 0.468
    下载: 导出CSV

    表  6  65℃回灌水驱替组离子相关性

    Table  6.   Correlation between ions in the tailwater reinjection group at 65°C

    皮尔逊相关性 Na+ K+ Ca2+ Mg2+ Cl SO42− pH
    Na+ 1
    K+ −0.399 1
    Ca2+ −0.263 0.707* 1
    Mg2+ 0.060 0.306 0.765* 1
    Cl −0.378 0.854** 0.549 0.147 1
    SO42− −0.404 0.869** 0.586 0.167 0.998** 1
    pH −0.246 0.113 0.626 0.495 0.110 0.142 1
    kc −0.285 0.482 0.858* 0.844* 0.217 0.268 0.679
    $ {{k}}_{{{\mathrm{c}}}}{'} $ −0.285 0.482 0.859* 0.845* 0.217 0.269 0.679
    C −0.180 0.506 0.892** 0.885** 0.311 0.356 0.638
    Ch 0.242 −0.728 −0.978** −0.972** −0.594 −0.631 −0.588
    下载: 导出CSV
  • [1] 李俊峰,李广. 中国能源、环境与气候变化问题回顾与展望[J]. 环境与可持续发展,2020,45(5):8-17.

    LI J F,LI G. Review and outlook on energy,environment and climate change in China[J]. Environment and Sustainable Development,2020,45(5):8-17. (in Chinese with English abstract
    [2] 邹晶莹. 砂岩热储地热尾水回灌化学堵塞机理研究[D]. 山东青岛:山东科技大学,2020.

    ZOU J Y. Research on chemical plugging mechanism of geothermal tailwater recharge in sandstone thermal storage[D]. Qingdao Shandong:Shandong University of Science and Technology,2020. (in Chinese with English abstract
    [3] 崔圆圆. 关于山东省地热尾水回灌试验的应用研究[J]. 山东国土资源,2019,35(7):64-71. doi: 10.12128/j.issn.1672-6979.2019.07.010

    CUI Y Y. Application research on geothermal brine reinjection experiment in Shandong Province[J]. Shandong Land and Resources,2019,35(7):64-71. (in Chinese with English abstract doi: 10.12128/j.issn.1672-6979.2019.07.010
    [4] 李尧,齐玉峰,黄烜,等. 兰考县新近系热储赋存规律及开发适宜性研究[J]. 河南科学,2021,39(10):1615-1623. doi: 10.3969/j.issn.1004-3918.2021.10.012

    LI Y,QI Y F,HUANG X,et al. Study on the occurrence regularity and development suitability of Neogene geothermal reservoir in Lankao County[J]. Henan Science,2021,39(10):1615-1623. (in Chinese with English abstract doi: 10.3969/j.issn.1004-3918.2021.10.012
    [5] 赵振,秦光雄,罗银飞,等. 西宁盆地地热水特征及回灌结垢风险[J]. 水文地质工程地质,2021,48(5):193-204.

    ZHAO Z,QIN G X,LUO Y F,et al. Geothermal water characteristics and reinjection scaling risk in Xining Basin[J]. Hydrogeology and Engineering Geology,2021,48(5):193-204. (in Chinese with English abstract
    [6] 罗璐,朱霞,何春艳,等. 陕西咸阳地热田地热流体成因研究[J]. 地质论评,2019,65(6):1422-1430.

    LUO L,ZHU X,HE C Y,et al. Study on the genesis of geothermal fluid in Xianyang geothermal field,Shaanxi Province[J]. Geological Review,2019,65(6):1422-1430. (in Chinese with English abstract
    [7] 许勇. 西安三桥地区孔隙型地热尾水回灌模拟及前景展望[D]. 西安:长安大学,2018.

    XU Y. Simulation and prospects of porous geothermal brine reinjection in Sanqiao area,Xi'an [D]. Xi'an :Chang'an University,2018. (in Chinese with English abstract
    [8] 李泽威,袁飞,李明龙,等. 水化学特征在恩施盆地地热资源调查中的指示意义[J]. 地质科技通报,2023,42(4):83-94.

    LI Z W,YUAN F,LI M L,et al. Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin[J]. Bulletin of Geological Science and Technology,2023,42(4):83-94. (in Chinese with English abstract
    [9] 刘杰,宋美钰,田光辉. 天津地热资源开发利用现状及可持续开发利用建议[J]. 地质调查与研究,2012,35(1):67-73.

    LIU J,SONG M Y,TIAN G H. Current status and sustainable development suggestions for geothermal resource development and utilization in Tianjin[J]. Geological Survey and Research,2012,35(1):67-73. (in Chinese with English abstract
    [10] 阮传侠. 天津地区雾迷山组热储地热回灌研究[D]. 北京:中国地质大学(北京),2018.

    RUAN C X. Geothermal reinjection study of Wumishan Formation in Tianjin area [D]. Beijing:China University of Geosciences (Beijing). 2018. (in Chinese with English abstract
    [11] 蔺文静,刘志明,王婉丽,等. 中国地热资源及其潜力评估[J]. 中国地质,2013,40(1):312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021

    LIN W J,LIU Z M,WANG W L,et al. Assessment of geothermal resources and their potential in China[J]. Geology of China,2013,40(1):312-321. (in Chinese with English abstract doi: 10.3969/j.issn.1000-3657.2013.01.021
    [12] DU X,YE X,LU Y,et al. Research progress on artificial groundwater recharge blockage[J]. Advances in Earth Science,2009,24(9):973-980.
    [13] PORTIER S,VUATAZ F,NAMI P,et al. Chemical stimulation techniques for geothermal wells:Experiments on the three-well EGS system at Soultz-sous-Forêts,France[J]. Geothermics,2009,38(4):349-359.
    [14] JEONG H Y,JUN S C,CHEON J Y,et al. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications[J]. Geosciences Journal,2018,22(4):667-679.
    [15] GUNNARSSON I,ARNÓRSSON S. Impact of silica scaling on the efficiency of heat extraction from high-temperature geothermal fluids[J]. Geothermics,2005,34(3):320-329.
    [16] MACKAY E J. Modelling of in-situ scale deposition:The impact of reservoir and well geometries and kinetic reaction rates[C]//Anon. International Symposium on Oilfield Scale. [S. l. ]:OnePetro,2002.
    [17] 闫志为,刘辉利,张志卫. 温度及CO2对方解石、白云石溶解度影响特征分析[J]. 中国岩溶,2009,28(1):7-10. doi: 10.3969/j.issn.1001-4810.2009.01.002

    YAN Z W,LIU H L,ZHANG Z W. Influences of temperature and Pco2 on the solubility of calcite and dolomite[J]. Carsologica Sinica,2009,28(1):7-10. (in Chinese with English abstract doi: 10.3969/j.issn.1001-4810.2009.01.002
    [18] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶,2008,27(1):24-31. doi: 10.3969/j.issn.1001-4810.2008.01.005

    YAN Z W. Effect of sulfate ions on the solubility of calcite and dolomite[J]. Carsologica Sinica,2008,27(1):24-31. (in Chinese with English abstract doi: 10.3969/j.issn.1001-4810.2008.01.005
    [19] 徐国芳,马致远,周鑫,等. 地压型热储流体尾水回灌化学堵塞机理研究:以咸阳回灌一号井为例[J]. 工程勘察,2013,41(7):40-44.

    XU G F,MA Z Y,ZHOU X,et al. Study on chemical plugging mechanism of ground-pressure type thermal storage fluid tailwater recharge:A case study of Xianyang recharge Well No. 1[J]. Geotechnical Investigation & Surveying,2013,41(7):40-44. (in Chinese with English abstract
    [20] 潘俊,姜明岑,冯许阳. 地下水中铁锰离子对地下水地源热泵回灌影响的试验研究[J]. 暖通空调,2014,44(8):80-84.

    PAN J,JIANG M C,FENG X Y. Experimental study on the effect of iron and manganese ions in ground water on groundwater ground source heat pump recharge[J]. Journal of HV& AC,2014,44(8):80-84. (in Chinese with English abstract
    [21] 周鑫. 沉积盆地孔隙型地下热水回灌堵塞机理研究[D]. 西安:长安大学,2013.

    ZHOU X. Study of pore-type groundwater recharge plugging mechanism in sedimentary basins[D]. Xi'an:Chang'an University,2013. (in Chinese with English abstract
    [22] 刘久荣. 地热回灌的发展现状[J]. 水文地质工程地质,2003,30(3):100-104. doi: 10.3969/j.issn.1000-3665.2003.03.025

    LIU J R. The status of geothermal reinjection[J]. Hydrogeology & Engineering Geology,2003,30(3):100-104. (in Chinese with English abstract doi: 10.3969/j.issn.1000-3665.2003.03.025
    [23] 祁翠婷,詹红兵,郝永红. 包气带井回灌引起的非饱和-饱和流分析[J]. 地质科技通报,2023,42(4):118-129.

    QI C T,ZHAN H B,HAO Y H. Analysis of unsaturated-saturated flow induced by a vadose zone well injection[J]. Bulletin of Geological Science and Technology,2023,42(4):118-129. (in Chinese with English abstract
    [24] JANSE R J. Conducting correlation analysis:Important limitations and pitfall[J]. Clinical Kidney Journal,2021,14(11):2332-2337.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  26
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 录用日期:  2023-09-09
  • 修回日期:  2023-09-03
  • 网络出版日期:  2025-02-18

目录

    /

    返回文章
    返回