Characteristics and geodynamic background of the coal-controlled structural patterns in the Qianyingzi Coalmine, Huaibei Coalfield
-
摘要:
钱营孜矿井位于淮北煤田宿县矿区的西部, 毗邻徐宿弧形推覆构造南段的外缘带。为认识该矿井构造变形与演化规律、动力学机制以及指导未来资源探采方向提供重要地质依据。利用最新的矿井地质勘探与生产资料, 对钱营孜矿井开展构造格架和控煤构造样式分析, 划分矿井构造期次, 讨论构造发育的区域大地构造背景。结果表明, 矿井内石炭纪-二叠纪含煤地层总体呈一轴向NNE、向SSW仰起的宽缓向斜; 矿井内断裂构造非常发育, 逆断层数量大于正断层, 2类断层的走向均以NE至NNE向为主, 其次为NS向; 矿井构造格架显著受控于数条NS向至NE向的大型断层, 自西向东受南坪断层、F22、F17、DF200及双堆断层等主干断层的分割, 呈现东、西分带特征; 矿井控煤构造样式可以划分为挤压、伸展和走滑3个类型, 以及逆冲牵引褶皱、对冲式构造、冲起构造、叠瓦状构造、地堑、地垒、阶梯状断层、正花状构造、羽状雁列式构造9个亚类型; 构造组合分析表明, F17断层除逆冲活动之外, 还存在显著的平移活动。矿井构造可划分为5期, 从早到晚分别为: 轴向NNE的冯家向斜、近NS向逆断层、NNE向逆-左行平移断层及NE向逆断层、近NS向正断层、NE向正断层。矿井内第1, 2期缩短构造分别是印支期华北克拉通与华南板块汇聚过程中的前陆变形及随后陆-陆碰撞造山变形的影响结果; 第3期压扭性构造与西太平洋区伊泽奈崎板块早白垩世初向东亚大陆边缘快速斜向俯冲有关; 第4, 5期伸展构造则是早白垩世以来中国东部强烈伸展背景下发育而成。
Abstract:The Qianyingzi Coalmine is located on the west of the Suxian Mining area of the Huaibei Coalfield, adjacent to the outer edge of the southern segment of the Xu-Su Arc Nappe Belt.
Methods Based on the latest geological exploration and production data, this paper analysed the structural framework and coal-controlled structural patterns of the Qianyingzi Coalmine, divided the tectonic stages, and discussed the geotectonic background of the coalmine structures,
Objective which provides an important geological basis for the understanding of the tectonic deformation and evolution of the coalmine, the geodynamic mechanism and the prediction of exploration directions.
Results The results show that the Carboniferous-Permian coal-bearing formations in the mine are generally a gentle syncline with an NNE-trending axis. The faults in the mine are well developed, and the number of reverse faults is greater than that of normal faults. Both of these faults are mainly NE to NNE, followed by NS. The structural framework of this mine is significantly controlled by several large NS to NE-striking faults and is segmented from west to east by major faults, including the Nanping, F22, F17, DF200 and Shuangdui faults, which exhibit the characteristic of east and west zonation. The coal-controlled structural patterns in the mine can be classified into three types, namely, compressional, extensional and strike-slip. And the coal-controlled patterns can be further divided into nine subtypes, namely, thrust drag folds, hedge structures, pop-up structures, imbricate structures, grabens, horsts, step faults, positive flower structures and pinnated en-echelon structures. The analysis of structural combinations shows that the F17 fault has not only thrusting motion but also significant transcurrent activity.
Conclusion The structural deformation of coal-bearing formation in the Qianyingzi Coalmine can be divided into five stages: the Fengjia Syncline with an NNE-trending axis, nearly NS-striking reverse faults, NNE-striking reverse-sinistral faults and NE-striking reverse faults, nearly NS-striking normal faults, and NW-SE-striking normal faults. Combined with the results of previous studies on the regional tectonic background, the first and second shortening structures in this mine are the results of foreland deformation during the convergence of the North China Craton and South China Plate and subsequent continent-continent collisional deformation during the Indosinian period. The third stage compresso-shear structures are related to the rapid oblique subduction of the Izanagi Plate toward the East Asian continental margin at the beginning of the Early Cretaceous in the Western Pacific. The fourth and fifth stage extensional structures developed against a strong extensional background in eastern China during the Early Cretaceous.
-
图 3 钱营孜矿井地震勘探地质解译剖面图(剖面位置见图 2)
Figure 3. Geological cross-sections interpreted from the seismic profiles in the Qianyingzi Coalmine
图 5 钱营孜矿井主要褶皱与断层叠加变形过程示意图
a.第1期NWW-SEE向挤压应力作用下发育了NNE轴向的冯家向斜,与淮北煤田宿南向斜、宿南背斜、南坪向斜等宽缓短轴褶皱同期;b.第2期近EW向挤压应力作用下发育了一系列近NS向逆断层,分割错断了冯家向斜,与整体向西逆冲缩短的徐宿弧形推覆构造同期;c.第3期NW-SE向挤压应力作用下,NNE向的F17断层南段出现左行压扭活动,同时共生、伴生大量的NE向的逆断层和NE轴向的东坪集背斜、李寨向斜等次级褶曲,NE向逆断层错断第2期近NS向逆断层;d.第4期近EW向的拉张应力作用下发育了近NS向正断层,正断层F22错断了第3期NE向逆断层(如F51);e.第5期NW-SE向拉张应力作用下发育了大量NE-SW向正断层,南坪断层和双堆断层分割错断了早期逆断层以及第4期F22断层,南坪断层的正断活动还控制了古近系沉积,但未切割新近系
Figure 5. Schematic diagrams of the development history of major folds and faults in the Qianyingzi Coalmine
表 1 钱营孜矿井主要断层特征统计
Table 1. Statistics of major fault characteristics in the Qianyingzi Coalmine
断层名称 断层性质 位置 构造分级 走向 倾向 倾角/(°) 最大落差/m 区内延伸长度/m 南坪断层 正断层 西部边界 一级 NE NW 70 >1 000 75 000 双堆断层 正断层 东南边界 一级 NE NW 70 >1 000 >3 000 F22 正断层 冯家向斜西翼 二级 NS W 65~75 350 >6 500 DF200 逆断层 东部边界 二级 NS E 45~50 >1 500 10 000 QSF211 逆断层 邻近东部边界 三级 NS W 35~55 200 3 000 F25 逆断层 邻近西部边界 三级 NE SE 45~50 160 5 000 F51 逆断层 冯家向斜西翼 三级 NE SE 50~55 135 3 000 F15 逆断层 冯家向斜西翼 三级 NS W 45~50 65 3 400 F17 逆断层 冯家向斜东翼 二级 NS~NNE E~SEE 50~55 300 10 000 F17-1 逆断层 F17断层东盘 三级 NNE SEE 50~55 110 3 900 F17-2 逆断层 F17断层西盘 三级 NNE SEE 50~55 135 3 900 DF165 逆断层 F17断层东盘 三级 NNE NWW 50~55 55 1 700 QSF189 逆断层 F17断层东盘 三级 NE SE 35~55 80 1 700 表 2 钱营孜矿井控煤构造样式类型
Table 2. Classification of coal-controlled structural patterns in the Qianyingzi Coalmine
类型 亚类型 控煤作用 挤压构造组合样式 逆冲牵引褶皱 逆断层上、下盘的煤层均呈不对称褶皱变形,上盘煤层整体埋深变浅,靠近逆断层煤层揉皱变形强烈,层厚不稳定 对冲式构造 对冲的逆断层上盘煤层因抬升变浅,所夹共用下降盘的煤层被掩覆,且多呈向形弯曲 冲起构造 冲起断块内的煤层因进一步抬升而变浅,且多呈背形弯曲 叠瓦状组合 含煤地层整体被抬升,但被分割成若干断块,断块内煤层产状改造显著,常伴生较多次级逆断层,构造较复杂 伸展构造组合样式 地堑 地堑内煤层埋深增大,整体对煤层产状影响不大 地垒 地垒上的煤层因抬升变浅,整体对煤层产状影响不大 阶梯状断层 含煤地层被分割成若干断块,埋深依次加大,断块内煤层产状变化不大 走滑构造组合样式 正花状构造 构造带内含煤地层整体呈背形弯曲,抬升变浅,伴生较多次级逆断层,构造复杂,靠近断层产状改造显著 羽状雁列式构造 靠近主干断层的含煤地层破坏程度增大,构造复杂;平行于主干断层的剖面上,含煤地层可呈次级叠瓦状构造组合;垂直于主干断层的剖面上,含煤地层呈冲起构造组合或正花状构造组合特征 -
[1] 李铎, 武强. 南定地热田成因及影响因素探讨[J]. 中国矿业大学学报, 2002, 31(1): 53-57. doi: 10.3321/j.issn:1000-1964.2002.01.013LI D, WU Q. Research on genesis and influencing factors of Nanding geothermal field[J]. Journal of China University of Mining & Technology, 2002, 31(1): 53-57. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-1964.2002.01.013 [2] HOU Q L, LI H J, FAN J J, et al. Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China Earth Sciences, 2012, 55(11): 1755-1763. doi: 10.1007/s11430-012-4493-1 [3] WANG H F, WANG L, CHENG Y P, et al. Characteristics and dominant controlling factors of gas outburst in Huaibei Coalfield and its countermeasures[J]. International Journal of Mining Science and Technology, 2013, 23(4): 591-596. doi: 10.1016/j.ijmst.2013.07.019 [4] PAN R K, CHENG Y P, YUAN L, et al. Effect of bedding structural diversity of coal on permeability evolution and gas disasters control with coal mining[J]. Natural Hazards, 2014, 73(2): 531-546. doi: 10.1007/s11069-014-1086-7 [5] 曹代勇, 谭节庆, 陈利敏, 等. 我国煤炭资源潜力评价与赋煤构造特征[J]. 煤炭科学技术, 2013, 41(7): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201307003.htmCAO D Y, TAN J Q, CHEN L M, et al. Coal resources potential evaluation and coal occurrence tectonics in China[J]. Coal Science and Technology, 2013, 41(7): 5-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201307003.htm [6] 占文锋, 曹代勇, 刘天绩, 等. 柴达木盆地北缘控煤构造样式与赋煤规律[J]. 煤炭学报, 2008, 33(5): 500-504. doi: 10.3321/j.issn:0253-9993.2008.05.006ZHAN W F, CAO D Y, LIU T J, et al. Coal-controlled structural styles and coal occurrence regularity in northern Qaidam Basin[J]. Journal of China Coal Society, 2008, 33(5): 500-504. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-9993.2008.05.006 [7] 曹代勇, 孙红波, 孙军飞. 青海东北部木里煤田控煤构造样式与找煤预测[J]. 地质通报, 2010, 29(11): 1696-1703. doi: 10.3969/j.issn.1671-2552.2010.11.012CAO D Y, SUN H B, SUN J F. Coal-controlled structural styles and looking for coal resources in Muli Coalfield, northeastern Qinghai, China[J]. Geological Bulletin of China, 2010, 29(11): 1696-1703. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2010.11.012 [8] 李焕同, 王林杰, 曹代勇. 湖南涟邵煤田控煤构造样式研究[J]. 河北工程大学学报(自然科学版), 2014, 31(1): 66-69. doi: 10.3969/j.issn.1673-9469.2014.01.018LI H T, WANG L J, CAO D Y. Coal measures occurrence and controlling structure pattern of Lianshao Coalfield, Hunan Province[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2014, 31(1): 66-69. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-9469.2014.01.018 [9] 赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3): 319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030ZHAO Y, XU G, ZHANG S H, et al. Yanshanian movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 2004, 11(3): 319-328. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2004.03.030 [10] ZHU G, NIU M L, XIE C L, et al. Sinistral to normal faulting along the Tan-Lu fault zone: Evidence for geodynamic switching of the East China continental margin[J]. Journal of Geology, 2010, 118(3): 277-293. doi: 10.1086/651540 [11] ZHU G, JIANGD Z, ZHANG B L, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005 [12] DONG S W, ZHANG Y Q, ZHANG F Q, et al. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution[J]. Journal of Asian Earth Sciences, 2015, 114: 750-770. doi: 10.1016/j.jseaes.2015.08.011 [13] 朱日祥, 朱光, 李建威, 等. 华北克拉通破坏[M]. 北京: 科学出版社, 2020.ZHU R X, ZHU G, LI J W, et al. The North China Craton destruction[M]. Beijing: Science Press, 2020. (in Chinese with English abstract) [14] 屈争辉, 姜波, 汪吉林, 等. 淮北地区构造演化及其对煤与瓦斯的控制作用[J]. 中国煤炭地质, 2008, 20(10): 34-37. doi: 10.3969/j.issn.1674-1803.2008.10.010QU Z H, JIANG B, WANG J L, et al. Characteristics of tectonic evolution and its controlling effects on coal and gas in Huaibei area[J]. Coal Geology of China, 2008, 20(10): 34-37. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2008.10.010 [15] 朱文伟, 张品刚, 张继坤, 等. 安徽省两淮煤田控煤构造样式研究[J]. 中国煤炭地质, 2011, 23(8): 49-52. doi: 10.3969/j.issn.1674-1803.2011.08.11ZHU W W, ZHANG P G, ZHANG J K, et al. Study on structural coal controlling pattern in Huainan and Huaibei Coalfields, Anhui Province[J]. Coal Geology of China, 2011, 23(8): 49-52. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2011.08.11 [16] 李书奎, 彭涛. 淮北刘店煤矿构造特征及其形成机制分析[J]. 中国煤炭地质, 2012, 24(7): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201207007.htmLI S K, PENG T. Analysis of structural features and formation mechanism in Liudian Coalmine, Huaibei[J]. Coal Geology of China, 2012, 24(7): 24-28. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201207007.htm [17] 姜涛, 姜波, 黄涵彬. 淮北煤田五沟煤矿构造特征及其演化[J]. 中国煤炭地质, 2014, 26(4): 11-16. doi: 10.3969/j.issn.1674-1803.2014.04.03JIANG T, JIANG B, HUANG H B. Structural features and evolution in Wugou coalmine, Huaibei Coalfield[J]. Coal Geology of China, 2014, 26(4): 11-16. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2014.04.03 [18] 方婷, 解国爱, 王博, 等. 淮北煤田构造特征和形成机制[J]. 煤田地质与勘探, 2017, 45(3): 1-6. doi: 10.3969/j.issn.1001-1986.2017.03.001FANG T, XIE G A, WANG B, et al. The structure features and forming mechanism of Huaibei Coalfield[J]. Coal Geology & Exploration, 2017, 45(3): 1-6. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1986.2017.03.001 [19] 张继坤. 安徽省煤田构造与构造控煤作用研究[D]. 北京: 中国矿业大学(北京), 2011.ZHANG J K. Coalfield structures and tectonic coal-controlling of Anhui Province[D]. Beijing: China University of Mining & Technology (Beijing), 2011. (in Chinese with English abstract) [20] 彭涛. 淮北煤田断裂构造系统及其形成演化机理[D]. 安徽淮南: 安徽理工大学, 2015.PENG T. The fault system and its evolution mechanism of Huaibei Coalfield[D]. Huainan Anhui: Anhui University of Science & Technology, 2015. (in Chinese with English abstract) [21] 刘军. 淮北矿区构造演化及其对矿井构造发育的控制作用[D]. 江苏徐州: 中国矿业大学, 2017.LIU J. The tectonic evolution and its effect on mine structure in Huaibei Coalfield[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2017. (in Chinese with English abstract) [22] 李满堆. 钱营孜煤矿东一采区DF200逆断层防水煤柱计算[J]. 能源技术与管理, 2016, 41(2): 107-109. doi: 10.3969/j.issn.1672-9943.2016.02.041LI M D. Calculation of waterproof coal pillar on the DF200 reverse fault in Dongyi mining field of Qianyingzi Coal Mine[J]. Energy Technology and Management, 2016, 41(2): 107-109. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9943.2016.02.041 [23] 李永, 高川. 钱营孜矿DF200逆断层灰岩推覆体水害初步分析[J]. 能源技术与管理, 2015, 40(2): 45-46. doi: 10.3969/j.issn.1672-9943.2015.02.019LI Y, GAO C. Preliminary analysis on water damage from limestone nappe of DF200 thrust fault in the Qianyingzi Mine[J]. Energy Technology and Management, 2015, 40(2): 45-46. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9943.2015.02.019 [24] 陈凯, 刘启蒙, 刘瑜, 等. 钱营孜煤矿深部地下水水化学特征及来源解析[J]. 煤田地质与勘探, 2022, 50(8): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202208011.htmCHEN K, LIU Q M, LIU Y, et al. Hydrochemical characteristics and source analysis of deep groundwater in Qianyingzi Coal Mine[J]. Coal Geology & Exploration, 2022, 50(8): 99-106. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202208011.htm [25] 卫军光, 崔洪庆, 马东晓, 等. 钱营孜32煤层瓦斯地质规律研究及突出预测[J]. 煤矿现代化, 2011, 20(1): 39-41. doi: 10.3969/j.issn.1009-0797.2011.01.019WEI J G, CUI H Q, MA D X, et al. Study on gas geological law and outburst prediction of Qianyingzi 32 Coal Seam[J]. Coal Mine Modernization, 2011, 20(1): 39-41. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-0797.2011.01.019 [26] 李明, 杨伟峰, 刘曦, 等. 钱营孜煤矿32煤赋存特征及其稳定性评价[J]. 煤矿安全, 2011, 42(8): 159-161. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201108054.htmLI M, YANG W F, LIU X, et al. Occurrence characteristics and stability evaluation of 32 coal in the Qianyingzi Coal Mine[J]. Safety in Coal Mines, 2011, 42(8): 159-161. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201108054.htm [27] 吴素珍, 彭涛, 郭艳. 皖北钱营孜煤矿地温分布规律及其异常因素分析[J]. 中国煤炭地质, 2013, 25(6): 30-35. doi: 10.3969/j.issn.1674-1803.2013.06.007WU S Z, PENG T, GUO Y. Ground temperature distribution pattern and its abnormal factor analysis in Qianyingzi Coalmine, northern Anhui[J]. Coal Geology of China, 2013, 25(6): 30-35. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2013.06.007 [28] ZHU R X, XU Y G, ZHU G, et al. Destruction of the North China Craton[J]. Science China Earth Sciences, 2012, 55(10): 1565-1587. doi: 10.1007/s11430-012-4516-y [29] XU J W, ZHU G, TONG W X, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the Northwest of the Pacific Ocean[J]. Tectonophysics, 1987, 134(4): 273-310. doi: 10.1016/0040-1951(87)90342-8 [30] ZHANG S, ZHU G, LIU C, et al. Strike-slip motion within the Yalu River fault zone, NE Asia: The development of a shear continental margin[J]. Tectonics, 2018, 37(6): 1771-1796. doi: 10.1029/2018TC004968 [31] ZHANG S, ZHU G, XIAO S Y, et al. Temporal variations in the dynamic evolution of an overriding plate: Evidence from the Wulong area in the eastern North China Craton, China[J]. Geological Society of America Bulletin, 2020, 132(9/10): 2023-2042. [32] ZHU G, LIU C, GU C C, et al. Oceanic plate subduction history in the western Pacific Ocean: Constraint from Late Mesozoic evolution of the Tan-Lu fault zone[J]. Science China (Earth Sciences), 2018, 61(4): 386-405. doi: 10.1007/s11430-017-9136-4 [33] ZHU G, LU Y C, SU N, et al. Crustal deformation and dynamics of Early Cretaceous in the North China Craton[J]. Science China (Earth Sciences), 2021, 64(9): 1428-1450. doi: 10.1007/s11430-020-9749-0 [34] 解国爱, 董承杰, 李凤荣, 等. 淮北煤田孙疃煤矿构造特征及其演化[J]. 中国煤炭地质, 2015, 27(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201503001.htmXIE G A, DONG C J, LI F R, et al. Structural features and evolution in Suntuan Coalmine, Huaibei Coalfield[J]. Coal Geology of China, 2015, 27(3): 1-5. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201503001.htm [35] SHU L S, YIN H W, FAURE M, et al. Mesozoic intracontinental underthrust in the SE margin of the North China Block: Insights from the Xu-Huai thrust-and-fold belt[J]. Journal of Asian Earth Sciences, 2017, 141: 161-173. [36] 李法浩, 解国爱, 田荣松, 等. 华北板块东南缘徐淮推覆-褶皱带的物理模拟[J]. 地质通报, 2018, 37(6): 1087-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806013.htmLI F H, XIE G A, TIAN R S, et al. Physical modeling of Xu-Huai thrust-fold belt on the southeastern margin of North China Block[J]. Geological Bulletin of China, 2018, 37(6): 1087-1100. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806013.htm [37] 琚宜文, 王桂梁. 淮北宿临矿区构造特征及演化[J]. 辽宁工程技术大学学报(自然科学版), 2002, 21(3): 286-289. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200203009.htmJU Y W, WANG G L. Tectonic characteristics and evolution of the Sulin Mine area in the Huaibei Coalfield[J]. Journal of Liaoning Technical University (Natural Science), 2002, 21(3): 286-289. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200203009.htm [38] 田诺成. 邹庄井田F25断层导含水性评价及其防治对策研究[D]. 安徽淮南: 安徽理工大学, 2016.TIAN N C. Assessment of transmissibility and aquosity of F25 fault as well as measure of prevention in Zouzhuang Coal Mine[D]. Huainan Anhui: Anhui University of Science and Technology, 2016. (in Chinese with English abstract) [39] 吕凡家. 淮北煤田宿县矿区构造特征及其成因分析[J]. 能源技术与管理, 2017, 42(4): 7-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201704005.htmLÜ F J. Structural characteristics and genetic analysis of Suxian Mining Area in the Huaibei Coalfield[J]. Energy Technology and Management, 2017, 42(4): 7-8. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201704005.htm [40] HACKER B R, RATSCHBACHER L, WEBB L, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6): 13339-13364. [41] ZHENG Y F. Metamorphic chemical geodynamics in continental subduction zones[J]. Chemical Geology, 2012, 328: 5-48. [42] ZHAO T, ZHU G, LIN S Z, et al. Indentation-induced tearing of a subducting continent: Evidence from the Tan-Lu fault zone, East China[J]. Earth-Science Reviews, 2016, 152: 14-36. [43] 陆元超, 朱光, 尹浩, 等. 郯庐断裂带起源与大陆斜向汇聚[J]. 地质学报, 2022, 96(10): 3410-3425. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202210008.htmLU Y C, ZHU G, YIN H, et al. Origin of the Tan-Lu fault zone and continental oblique convergence[J]. Acta Geologica Sinica, 2022, 96(10): 3410-3425. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202210008.htm [44] 产思维, 张家嘉, 朱义坤. 安徽丁里岩体地质和地球化学特征及LA-ICP-MS锆石U-Pb年龄[J]. 矿产与地质, 2021, 35(2): 249-257. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202102010.htmCHAN S W, ZHANG J J, ZHU Y K. Geological and geochemical characteristics and LA-ICP-MS zircon U-Pb dating age of Dingli Granite in Anhui[J]. Mineral Resources and Geology, 2021, 35(2): 249-257. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202102010.htm [45] ENGEBRETSON D C, COX A, GORDON R G. Relative motions between oceanic and continental plates in the Pacific Basin[M]. Boulder, Colorado, USA: Geological Society of America, 1985. [46] MARUYAMA S, ISOZAKI Y, KIMURAG, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present[J]. Island Arc, 1997, 6(1): 121-142. [47] LIU S F, GURNIS M, MA P F, et al. Reconstruction of Northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma[J]. Earth-Science Reviews, 2017, 175: 114-142. [48] WU J, LIN Y A, FLAMENT N, et al. Northwest Pacific-Izanagi plate tectonics since Cretaceous times from western Pacific mantle structure[J]. Earth and Planetary Science Letters, 2022, 583: 117445. [49] ZHU G, WANG Y S, LIU G S, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology, 2005, 27(8): 1379-1398. [50] GU C C, ZHU G, ZHAI M J, et al. Features and origin time of Mesozoic strike-slip structures in the Yilan-Yitong fault zone[J]. Science China Earth Sciences, 2016, 59(12): 2389-2410. [51] 朱光, 王薇, 顾承串, 等. 郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示[J]. 岩石学报, 2016, 32(4): 935-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604001.htmZHU G, WANG W, GU C C, et al. Late Mesozoic evolution history of the Tan-Lu fault zone and its indication to destruction processes of the North China Craton[J]. Acta Petrologica Sinica, 2016, 32(4): 935-949. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604001.htm [52] LIU C, ZHU G, ZHANG S, et al. Mesozoic strike-slip movement of the Dunhua-Mishan fault zone in NE China: A response to oceanic plate subduction[J]. Tectonophysics, 2018, 723: 201-222. [53] ZHANG Y Q, DONG S W, SHI W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China[J]. Tectonophysics, 2003, 363(3): 243-258. [54] WU X D, ZHU G, YIN H, et al. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex ineastern China[J]. Tectonics, 2020, 39(9): TC006132. [55] 韦帅, 杨治, 邓宇峰, 等. 徐宿弧安徽北段地区矽卡岩型Au-Fe-Cu矿床以及有关的中酸性侵入岩年代学研究[J]. 岩石矿物学杂志, 2021, 40(2): 395-410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202102015.htmWEI S, YANG Z, DENG Y F, et al. Geochronology of skarn type Au-Fe-Cu deposits and related intermediate-acid intrusive rocks in the northern Anhui section, Xu-Su arcuate structural area[J]. Acta Petrologica et Mineralogica, 2021, 40(2): 395-410. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202102015.htm [56] XU W L, WANG Q H, LIU X C, et al. Chronology and sources of Mesozoic intrusive complexes in the Xuzhou-Huainan region, central China: Constraints from SHRIMP zircon U-Pb dating[J]. Acta Geologica Sinica (English Edition), 2004, 78(1): 96-106. [57] 杨德彬, 许文良, 裴福萍, 等. 徐淮地区早白垩世adakitic岩石的年代学和Pb同位素组成: 对岩浆源区与华北克拉通东部构造演化的制约[J]. 岩石学报, 2008, 24(8): 1745-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808008.htmYANG D B, XU W L, PEI F P, et al. Chronology and Pb isotope compositions of Early Cretaceous adakitic rocks in Xuzhou-Huaibei area, central China: Constraints on magma sources and tectonic evolution in the eastern North China Craton[J]. Acta Petrologica Sinica, 2008, 24(8): 1745-1758. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808008.htm [58] 周虎, 尚德锋, 产思维, 等. 徐淮地区斑井岩体锆石U-Pb测年、岩石成因及其地质意义[J]. 矿物岩石, 2019, 39(3): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201903002.htmZHOU H, SHANG D F, CHAN S W, et al. Zircon U-Pb dating, petrogenesis and geological significance of the Banjing pluton in Xuhuai area[J]. Journal of Mineralogy and Petrology, 2019, 39(3): 9-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201903002.htm [59] 王伟, 产思维. 安徽淮北地区徐楼岩体锆石LA-ICP-MS U-Pb年代学、地球化学特征[J]. 安徽地质, 2020, 30(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ202001003.htmWANG W, CHAN S W. LA-ICP-MS U-Pb chronologic and geochemical characteristics of zircons from the Xulou rock mass in the Huaibei area, Anhui Province[J]. Geology of Anhui, 2020, 30(1): 7-13. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ202001003.htm [60] 产思维. 徐淮地区早白垩世闪长岩类继承锆石U-Pb年代学及地质意义[J]. 地质学刊, 2020, 44(3): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ202003004.htmCHAN S W. Inherited zircon U-Pb chronology and geological significance of the Early Cretaceous diorites in Xuhuai area[J]. Journal of Geology, 2020, 44(3): 258-264. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ202003004.htm [61] 刘元晴, 文冬光, 吕琳, 等. 沂蒙山区典型断陷盆地岩溶地下水系统特征: 以莱芜盆地为例[J]. 地质科技通报, 2022, 41(1): 157-167. doi: 10.19509/j.cnki.dzkq.2022.0013LIU Y Q, WEN D G, LÜ L, et al. Characteristics of karst groundwater flow systems of typical faulted basins in Yimeng Mountain area: A case study of Laiwu Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 157-167. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0013 [62] 王向东, 王任, 石万忠, 等. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 2022, 41(3): 85-95. doi: 10.19509/j.cnki.dzkq.2022.0089WANG X D, WANG R, SHI W Z, et al. Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 85-95. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0089 [63] ZHANG Y Q, QIU E K, DONG S W, et al. Late Mesozoic intracontinental deformation and magmatism in North and NE China in response to multi-plate convergence in NE Asia: An overview and new view[J]. Tectonophysics, 2022, 835: 229377.