Mechanism of CO2/N2 oil exchange in tight reservoirs based on molecular dynamics simulation
-
摘要:
利用分子动力学模拟来研究致密油的赋存状态以及CO2置换致密油的机理。采用蒙特卡洛法和分子动力学模拟算法,建立了不同相对分子质量烷烃在岩石壁面的赋存状态模型,研究了烷烃分子在不同岩石壁面的赋存特征,分析了CO2和N2置换致密油的微观机理。模拟温度和压力条件(343.13 K、20 MPa)选取四川盆地致密储层的温度和压力条件。测得石英壁面和方解石壁面中,C7在CO2中的扩散系数分别为1.88×10−5 m/s2和1.83×10−5 m/s2,在N2中分别为6.4×10−6 m/s2和9.01×10−6 m/s2。结果将CO2置换致密油的效果明显好于N2。随着相对分子质量的增加,烷烃分子从岩石壁面置换的难度增大,方解石壁面对烷烃分子的吸附作用要强于石英壁面。根据本研究模拟结果将CO2置换机理大致分为4个阶段:分子扩散阶段、竞争吸附阶段、乳化溶解阶段以及混相阶段(低相对分子质量烷烃)。
Abstract:Objective This research aims to investigate the storage state of tight oil and the mechanism of its replacement by CO2 through molecular dynamics simulations.
Methods The Monte Carlo method and molecular dynamics simulation algorithms were utilized to model the storage state of alkanes with varying molecular weights on rock surfaces. These models facilitate the examination of the storage characteristics of alkane molecules on different types of rock surfaces and analyze the micromechanisms of tight oil replacement by CO2 and N2. The simulated temperature and pressure conditions (343.13 K and 20 MPa) were chosen to reflect the conditions in tight reservoirs of the Sichuan Basin.
Results The diffusion coefficients of C7 in CO2 were measured at 1.88×10−5 m/s2 and 1.83×10−5 m/s2 for the quartz and calcite surfaces, respectively. In contrast, the coefficients in N2 were lower, measuring 6.4×10−6 m/s2 and 9.01×10−6 m/s2 for the same surfaces.
Conclusion These findings indicate that CO2 is significantly more effective than N2 in displacing tight oil. The challenge of displacing alkane molecules from rock surfaces increases with the relative molecular weight of the alkane. In addition, alkane molecule adsorption on the calcite surface is greater than on the quartz surface. Based on the experimental results presented in this paper, the CO2 replacement mechanism can be broadly categorized into four stages: molecular diffusion, competitive adsorption, emulsification and dissolution, and a mixed-phase stage (involving low-molecular-weight alkanes).
-
Key words:
- tight oil /
- CO2 /
- N2 /
- occurrence state /
- oil displacement mechanism /
- molecular dynamics simulation
-
表 1 α-石英壁面体系参数
Table 1. Parameters of the quartz system
体系
成分温度/
K压力/
MPaX方向/
nmY方向/
nmZ方向/
nm密度/
(g·cm−3)分子数 真空层 343.15 20 3.4 5.4 1.5 — — 封盖层 0.8 1.50 300 CO2 9.0 0.65 1500 N2 9.0 0.18 1500 C7 2.0 0.66 140 C12 2.0 0.73 100 C15 2.0 0.75 80 C18 2.0 0.76 70 C22 2.0 0.80 60 α-SiO2 2.4 — — 表 2 方解石壁面体系参数
Table 2. Parameters of the calcite systems
体系
成分温度/
K压力/
MPaX方向/
nmY方向/
nmZ方向/
nm密度/
(g·cm−3)分子数 真空层 343.15 20 3.2 5.5 1.5 — — 封盖层 0.8 1.50 300 CO2 9.0 0.65 1500 N2 9.0 0.18 1500 C7 2.0 0.66 135 C12 2.0 0.73 95 C15 2.0 0.75 75 C18 2.0 0.76 65 C22 2.0 0.80 55 CaCO3 2.3 — — 表 3 不同模型扩散系数统计表
Table 3. Diffusion coefficient of components in different models
扩散系数/(m·s−2) 模型 C7 C12 C15 C18 C22 α-SiO2-CO2 1.88×10−5 1.38×10−5 6.43×10−6 3.93×10−6 3.65×10−6 α-SiO2-N2 6.40×10−6 2.02×10−6 1.50×10−6 9.29×10−7 7.00×10−7 CaCO3-CO2 1.83×10−5 9.29×10−6 8.32×10−6 4.22×10−6 3.74×10−6 CaCO3-N2 9.01×10−6 2.88×10−6 1.57×10−6 1.02×10−6 8.70×10−7 -
[1] 邹才能,杨智,董大忠,等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学,2022,47(5):1517-1533.ZOU C N,YANG Z,DONG D Z,et al. Formation,distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science,2022,47(5):1517-1533. (in Chinese with English abstract [2] 鲜成钢,李国欣,李曹雄,等. 陆相页岩油效益开发的若干问题. 地球科学,2023,48(1):14-29.XIAN C G,LI G X,LI C X,et al. Key evaluation aspects for economic development of continental shale oil [J]. Earth Science,2023,48(1):14-29 . (in Chinese with English abstract [3] 杜金虎,何海清,杨涛,等. 中国致密油勘探进展及面临的挑战[J]. 中国石油勘探,2014,19(1):1-9. doi: 10.3969/j.issn.1672-7703.2014.01.001DU J H,HE H Q,YANG T,et al. Progress in China's tight oil exploration and challenges[J]. China Petroleum Exploration,2014,19(1):1-9. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2014.01.001 [4] 贾承造,邹才能,李建忠,等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报,2012,33(3):343-350.JIA C Z,ZOU C N,LI J Z,et al. Assessment criteria ,main types ,basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica,2012,33(3):343-350. (in Chinese with English abstract [5] 宿晓岑,巩磊,付晓飞,等. 鄂尔多斯盆地三边地区延长组7段致密砂岩储层裂缝分布特征及有效性评价[J]. 地球科学,2023,48(7):2601-2613.SU X C,GONG L,FU X F,et al. Fracture distribution characteristics and effectiveness evaluation of tight sandstone reservoir of Chang 7 Member in Sanbian area,Ordos Basin[J]. Earth Science,2023,48(7):2601-2613. (in Chinese with English abstract [6] LUO Y,LIU X,XIAO H,et al. Microscopic production characteristics of tight oil in the nanopores of different CO2-affected areas from molecular dynamics simulations[J]. Separation and Purification Technology,2023,306:122607. doi: 10.1016/j.seppur.2022.122607 [7] 辛红刚,田杨,冯胜斌,等. 鄂尔多斯盆地典型夹层型页岩油地质特征及潜力评价:以宁228井长7段为例[J]. 地质科技通报,2023,42(3):114-124.XIN H G,TIAN Y,FENG S B,et al. Geological characteristics and potential evaluation of typical interlayer shale oil in the Ordos Basin:A case study of the Chang 7 Member of Well Ning228[J]. Bulletin of Geological Science and Technology,2023,42(3):114-124. (in Chinese with English abstract [8] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1-10. doi: 10.1016/S1876-3804(20)60001-5ZHAO W Z,HU S Y,Hou L H,et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development,2020,47(1):1-10. (in Chinese with English abstract doi: 10.1016/S1876-3804(20)60001-5 [9] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184.ZHU R K,ZOU C N,WU S T,et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology,2019,40(6):1168-1184. (in Chinese with English abstract [10] 蒋恕,张天宇,郭彤楼,等. 川东南下志留统与Appalachian 泥盆系典型常压页岩气藏富集特征对比[J]. 地球科学,2023,48(1):77-91.JIANG S,ZHANG T Y,GUO T L,et al. Comparison of enrichment characteristics of typical normally-pressured shale gas reservoirs in Lower Silurian shale in southeastern Sichuan Basin and Devonian shales in Appalachian Basin[J]. Earth Science,2023,48(1):77-91. (in Chinese with English abstract [11] 吴春正,薛海涛,卢双舫,等. 页岩油在纳米级狭缝中吸附特征的分子动力学模拟[J]. 地质科技情报,2018,37(3):202-209.WU C Z,XUE H T,LU S F,et al. Molecular dynamics simulation of adsorption characteristics of shale oil in nanoscale slit[J]. Geological Science and Technology Inforination,2018,37(3):202-209. (in Chinese with English abstract [12] 万晓帆,刘丛丛,赵德锋,等. 页岩油研究热点与发展趋势[J]. 地球科学,2023,48(2):793-813.WAN X F,LIU C C,ZHAO D F,et al. Hotspot and development trend of shale oil research[J]. Earth Science,2023,48(2):793-813. (in Chinese with English abstract [13] 黄兴,李响,何梦卿,等. 致密轻质油藏不同CO2注入方式沥青质沉积及储层伤害特征[J]. 石油学报,2021,42(12):1665-1674. doi: 10.7623/syxb202112011HUANG X,LI X,HE M Q,et al. Characteristics of asphaltene precipitation and formation damage of tight light oil reservoir under different CO2 injection modes[J]. Acta Petrolei Sinica,2021,42(12):1665-1674. (in Chinese with English abstract doi: 10.7623/syxb202112011 [14] 苗万春,何善斌,张兴,等. 致密砂岩油藏CO2驱替沥青质沉积及储层伤害特征[J]. 成都理工大学学报(自然科学版),2021,48(5):573-581. doi: 10.3969/j.issn.1671-9727.2021.05.06MIAO W C,HE S B,ZHANG X,et al. Characteristics of asphaltene deposition and reservoir damage caused by CO2 flooding in tight sandstone reservoir[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2021,48(5):573-581. (in Chinese with English abstract doi: 10.3969/j.issn.1671-9727.2021.05.06 [15] 苏玉亮,陈征,唐梅荣,等. 致密储层不同驱替方式下超临界CO2蓄能返排效果实验研究[J]. 油气地质与采收率,2020,27(5):79-85.SU Y L,CHEN Z,TANG M R,et al. Experimental study of supercritical CO2 storage and flowback under different displacement methods in tight reservoirs[J]. Petroleum Geology and Recovery Efficiency,2020,27(5):79-85. (in Chinese with English abstract [16] 黄兴,倪军,李响,等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报,2020,41(7):853-864.HUANG X,NI J,LI X,et al. Chracteristics and influencing factors of CO2 flooding in different microscopic pore structures in tight reservoirs[J]. Acta Petrolei Sinica,2020,41(7):853-864. [17] 魏兵,尚静,蒲万芬,等. 超临界CO2在致密油藏中的扩散前缘预测[J]. 西南石油大学学报(自然科学版),2020,42(2):94-102.WEI B,SHANG J,PU W F,et al. Prediction the diffusive front of supercritical CO2 in tight oil reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2020,42(2):94-102. (in Chinese with English abstract [18] 施雷庭,张玉龙,叶仲斌,等. 玛湖砂砾岩致密油藏水平井CO2吞吐现场试验效果分析[J]. 油气藏评价与开发,2021,11(6):871-877.SHI L T,ZHANG Y L,YE Z B,et al. Field test effect analysis of CO2 huff and puff for EOR of horizontal wells in tight glutenite reservoir of Mahu oilfield[J]. Petroleum Reservoir Evaluation and Development,2021,11(6):871-877. (in Chinese with English abstract [19] 党海龙,肖前华,高瑞民,等. 延长油田长7致密油储层CO2驱替特征[J]. 深圳大学学报(理工版),2019,36(3):298-303. doi: 10.3724/SP.J.1249.2019.03298DANG H L,XIAO Q H,GAO R M,et al. Characteristics of CO2 displacement for Chang 7 tight reservoir in Yanchang oilfield[J]. Journal of Shenzhen University (Science and Engineering),2019,36(3):298-303. (in Chinese with English abstract doi: 10.3724/SP.J.1249.2019.03298 [20] 文杰,徐尚,苟启洋,等. 页岩油微运移研究进展及意义[J]. 地质科技通报,2024,43(4):1-14.WEN J,XU S,GOU Q Y,et al. Research status and significance of shale oil micromigration[J]. Bulletin of Geological Science and Technology,2024,43(4):1-14. (in Chinese with English abstract [21] 钱英强,杨雪,刘晓强,等. 烟道气驱替石英狭缝孔中页岩气的分子模拟[J]. 石油实验地质,2023,45(3):560-565.QIAN Y Q,YANG X,LIU X Q,et al. Molecular simulation of the displacement of shale gas in quartz slit by flue gas[J]. Petroleum Geology & Experiment,2023,45(3):560-565. (in Chinese with English abstract [22] 谢芸雅,刘显凤,王健,等. 鄂尔多斯盆地陕北地区延长组长7段致密油储层特征及其主控因素[J]. 海洋地质与第四纪地质,2022,42(3):149-159.XIE Y Y,LIU X F,WANG J,et al. Characteristics and main controlling factors of tight oil reservoirs in Chang 7 Member of Yanchang Formation in Ordos Basin,North Shaanxi[J]. Marine Geology & Quaternary Geology,2022,42(3):149-159. (in Chinese with English abstract [23] 黄成刚,倪祥龙,马新民,等. 致密湖相碳酸盐岩油气富集模式及稳产、高产主控因素:以柴达木盆地英西地区为例[J]. 西北大学学报(自然科学版),2017,47(5):724-738.HUANG C G,NI X L,MA X M,et al. Petroleum and gas enrichment pattern and major controlling factors of stable and high production of tight lacustrine carbonate rock reservoirs:A case of the Yingxi area in Qaidam Basin[J]. Journal of Northwest University(Natural Science Edition),2017,47(5):724-738. (in Chinese with English abstract [24] 田泽普,宋新民,王拥军,等. 考虑基质孔缝特征的湖相致密灰岩类型划分:以四川盆地中部侏罗系自流井组大安寨段为例[J]. 石油勘探与开发,2017,44(2):213-224.TIAN Z P,SONG X M,WANG Y J,et al. Classification of lacustrine tight limestone considering matrix pores or fractures:A case study of Da'anzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2017,44(2):213-224. (in Chinese with English abstract [25] 王森. 页岩油微尺度流动机理研究[D]. 山东 青岛:中国石油大学(华东),2016.WANG S. Microscale flow mechanisms of oil in shale[D]. Qingdao Shandong:China University of Petroleum (East China),2016. (in Chinese with English abstract [26] PENG F,WANG R,GUO Z,et al. Molecular dynamics simulation to estimate minimum miscibility pressure for oil with pure and impure CO2[J]. Journal of Physics Communications,2018,2(11):115028. doi: 10.1088/2399-6528/aaf090 [27] SONG Z,SONG Y,LI Y,et al. A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China[J]. Fuel,2020,276:118006. doi: 10.1016/j.fuel.2020.118006 [28] 蒋恕,张凯,杜凤双,等. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望[J]. 地球科学,2023,48(7):2733-2749.JIANG S,ZHANG K,DU F S,et al. Progress and prospects of CO2 storage and enhanced oil,gas and geothermal recovery[J]. Earth Science,2023,48(7):2733-2749. (in Chinese with English abstract [29] SANTOS M S,FRANCO L,CASTIER M,et al. Molecular dynamics simulation of n-alkanes and CO2 confined by calcite nanopores[J]. Energy & Fuels,2018,32(2):1934-1941. [30] 卢宁,东晓虎,刘慧卿,等. 不同类型壁面稠油-水体系润湿规律实验与分子动力学模拟[J]. 中国海上油气,2023,35(2):111-121.LU N,DONG X H,LIU H Q,et al. Experimental and molecular dynamics simulation study on the wetting characteristics of heavy oil-water system on different pore surfaces[J]. China Offshore Oil and Gas,2023,35(2):111-121. (in Chinese with English abstract [31] 汤翔,李宜强,韩雪,等. 致密油二氧化碳吞吐动态特征及影响因素[J]. 石油勘探与开发,2021,48(4):817-824. doi: 10.11698/PED.2021.04.14TANG X,LI Y Q,HAN X,et al. Dynamic characteristics and influencing factors of CO2 huff and puff in tight oil reservoirs[J]. Petroleum Exploration and Development,2021,48(4):817-824. (in Chinese with English abstract doi: 10.11698/PED.2021.04.14 [32] 牟建业,闫骁伦,张士诚,等. 二氧化碳在致密储层基质中的作用距离研究[J]. 新疆石油天然气,2024,20(3):64-71. doi: 10.12388/j.issn.1673-2677.2024.03.008MOU J Y,YAN X L,ZHANG S C,et al. Research on CO2 matrix penetration distance in tight reservoirs[J]. Xinjiang Oil & Gas,2024,20(3):64-71. (in Chinese with English abstract doi: 10.12388/j.issn.1673-2677.2024.03.008 [33] 史晓东,孙灵辉,战剑飞,等. 松辽盆地北部致密油水平井二氧化碳吞吐技术及其应用[J]. 石油学报,2022,43(7):998-1006.SHI X D,SUN L H,ZHAN J F,et al. Carbon dioxide huff-puff technology and application in tight oil horizontal wells in the northern Songliao Basin[J]. Acta Petrolei Sinica,2022,43(7):998-1006. (in Chinese with English abstract [34] 余涛,李琦,谭永胜,等. 基于分子动力学方法的致密砂岩储层CO2驱油研究进展[J]. 天然气工业,2024,44(4):146-159. doi: 10.3787/j.issn.1000-0976.2024.04.015YU T,LI Q,TAN Y S,et al. Research progress of CO2 flooding in tight sandstone reservoirs based on molecular dynamics method[J]. Natural Gas Industry,2024,44(4):146-159. (in Chinese with English abstract doi: 10.3787/j.issn.1000-0976.2024.04.015 [35] WANG P,LI X,TAO Z,et al. The miscible behaviors and mechanism of CO2/CH4/C3H8/N2 and crude oil in nanoslits:A molecular dynamics simulation study[J]. Fuel,2021,304:121461. doi: 10.1016/j.fuel.2021.121461 -