留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环对 MICP 加固土性能的影响

李俊 张伟丽 陈宗武 李明依

李俊,张伟丽,陈宗武,等. 冻融循环对 MICP 加固土性能的影响[J]. 地质科技通报,2025,44(1):175-184 doi: 10.19509/j.cnki.dzkq.tb20230462
引用本文: 李俊,张伟丽,陈宗武,等. 冻融循环对 MICP 加固土性能的影响[J]. 地质科技通报,2025,44(1):175-184 doi: 10.19509/j.cnki.dzkq.tb20230462
LI Jun,ZHANG Weili,CHEN Zongwu,et al. Effect of freeze-thaw cycles on the properties of MICP-treated soil[J]. Bulletin of Geological Science and Technology,2025,44(1):175-184 doi: 10.19509/j.cnki.dzkq.tb20230462
Citation: LI Jun,ZHANG Weili,CHEN Zongwu,et al. Effect of freeze-thaw cycles on the properties of MICP-treated soil[J]. Bulletin of Geological Science and Technology,2025,44(1):175-184 doi: 10.19509/j.cnki.dzkq.tb20230462

冻融循环对 MICP 加固土性能的影响

doi: 10.19509/j.cnki.dzkq.tb20230462
基金项目: 国家自然科学基金项目(51808517);绿色建筑材料国家重点实验室开放基金项目(2021GBM03);中国地质大学(武汉)教学实验室开放基金项目(SKJ2022073)
详细信息
    作者简介:

    李俊:E-mail:LiJun306@cug.edu.cn

    通讯作者:

    E-mail:zwl@cug.edu.cn

  • 中图分类号: TU472.99

Effect of freeze-thaw cycles on the properties of MICP-treated soil

More Information
  • 摘要:

    近年来微生物诱导碳酸钙沉积技术(MICP)备受关注,在土体加固领域也取得了一定进展。微生物加固后土体性能整体得到提升,但是冬冻春融的循环作用,使得土体结构逐渐松散,导致土体强度、抗冲刷性和保水能力均有所降低。目前针对冻融循环对MICP固化土性能影响研究较少。采用喷洒法对试样表面进行了MICP固化处理,对多组试样给予不同冻融周期作用,并进行了无侧限抗压强度测试、冲刷试验和水分蒸发试验,探讨了试样水分蒸发速率随冻融周期增加的变化规律,以及冻融对加固土性能的影响。基于土体抵抗冲刷破坏作用机理,结合不同冻融周期下试样的表观松散程度和试验结果,探究了冻融循环导致加固土性能下降的原因。试验结果表明:试样无侧限抗压强度(UCS值)从43.83 kPa提高到加固后的69.92 kPa,经历20次冻融循环,加固试样的UCS值为未加固试样1.48倍,且加固试样冲刷侵蚀量远小于未加固试样的一半。研究表明微生物诱导生成的碳酸钙沉积物能够有效填充土体内部孔隙,黏结松散土颗粒,从而大幅提高土体强度,有效削弱冻融对土体的破坏作用。虽然冻融循环作用周期增加使得土体的加固效果逐渐劣化,但在短期冻融环境下,MICP加固后土体仍具有较高的强度,并能有效抵抗雨水的冲刷侵蚀作用。

     

  • 图 1  试样照片

    Figure 1.  Photograph of a sample

    图 2  冲刷装置示意图

    Figure 2.  Schematic diagram of the eroding device

    图 3  C组试样碳酸钙质量分数分布图

    Figure 3.  Distribution of the calcium carbonate content of C sample

    图 4  A组(a~e)和B组(f~j)试样表观随冻融周期变化对比

    Figure 4.  Comparison of the changes in surface of the samples A (a-e) and B (f-j) with increasing number of freeze-thaw cycles

    图 5  无侧限抗压强度(UCS)随冻融周期变化曲线

    Figure 5.  Variation curve of the unconfined compressive strength with increasing number of freeze-thaw cycles

    图 6  试样水分累计蒸发量曲线图

    Figure 6.  Cumulative evaporation curve of the sample moisture

    图 7  冲刷侵蚀量

    Figure 7.  Erosion quality

    图 8  冲刷后试样的表观图像

    Figure 8.  Surface image of specimens after erosion

    图 9  试样内部碳酸钙分布示意图

    Figure 9.  Schematic diagram of the calcium carbonate distribution within the sample

    图 10  土体冻融破坏示意图

    Figure 10.  Schematic diagram of freeze-thaw damage to soil

    图 11  冲刷状态下土颗粒受力分析

    G. 土颗粒自身重力;F. 水流推动力;C. 土颗粒间的黏结力;N. 下部土层的作用力;f. 来自其他颗粒的阻力

    Figure 11.  Force analysis of the soil particles under eroding conditions

    表  1  试验用土物理性质

    Table  1.   Physical properties of the test soil

    液限
    ωL/%
    塑限
    ωP/%
    天然含水
    w/%
    塑性指数
    $ {I}_{{\mathrm{P}}} $
    相对密度
    $ {d}_{{\mathrm{s}}} $
    45.3 28.5 16.8 16.8 2.65
    下载: 导出CSV

    表  2  试样信息

    Table  2.   Specimen information

    试样规格 编号 是否MICP处理 冻融周期/次 数量
    冲刷试样
    (9 cm×9 cm×1.8 cm)
    A组 A00 0 1
    A05 5 1
    A10 10 1
    A15 15 1
    A20 20 1
    B组 B00 0 1
    B05 5 1
    B10 10 1
    B15 15 1
    B20 20 1
    无侧限抗压试样
    (直径36 mm,高80 mm)
    C组 C00 0 3
    C05 5 3
    C10 10 3
    C15 15 3
    C20 20 3
    D组 D00 0 3
    D05 5 3
    D10 10 3
    D15 15 3
    D20 20 3
    下载: 导出CSV

    表  3  菌液和胶结液用量

    Table  3.   Amounts of bacterial solution and cement solution

    试样名称 注入液 单次注入量/mL 注入次数
    无侧限抗压试样菌液401
    胶结液405
    冲刷试样菌液741
    胶结液745
    下载: 导出CSV
  • [1] DEJONG J T,MORTENSEN B M,MARTINEZ B C,et al. Bio-mediated soil improvement[J]. Ecological Engineering,2010,36(2):197-210. doi: 10.1016/j.ecoleng.2008.12.029
    [2] 裴迪,刘志明,胡碧茹,等. 巴氏芽孢杆菌矿化作用机理及应用研究进展[J]. 生物化学与生物物理进展,2020,47(6):467-482.

    PEI D,LIU Z M,HU B R,et al. Progress on mineralization mechanism and application research of Sporosarcina pasteurii[J]. Progress in Biochemistry and Biophysics,2020,47(6):467-482.(in Chinese with English abstract
    [3] CHU J,IVANOV V,NAEIMI M,et al. Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica,2014,9(2):277-285. doi: 10.1007/s11440-013-0278-8
    [4] 尹黎阳,唐朝生,谢约翰,等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学,2019,40(7):2525-2546.

    YIN L Y,TANG C S,XIE Y H,et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation[J]. Rock and Soil Mechanics,2019,40(7):2525-2546.(in Chinese with English abstract
    [5] 钱春香,王安辉,王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学,2015,36(6):1537-1548.

    QIAN C X,WANG A H,WANG X. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics,2015,36(6):1537-1548.(in Chinese with English abstract
    [6] 李驰,王硕,王燕星,等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学,2019,40(4):1291-1298.

    LI C,WANG S,WANG Y X,et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics,2019,40(4):1291-1298.(in Chinese with English abstract
    [7] LIN H,SULEIMAN M T,BROWN D G. Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP)[J]. Soils and Foundations,2020,60(4):944-961. doi: 10.1016/j.sandf.2020.07.003
    [8] DEJONG J T,FRITZGES M B,NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(11):1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
    [9] PAASSEN L A,GHOSE R,LINDEN T J M,et al. Quantifying biomediated ground improvement by ureolysis:Large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(12):1721-1728. doi: 10.1061/(ASCE)GT.1943-5606.0000382
    [10] 张宽,唐朝生,刘博,等. 基于新型单相MICP技术改性黏性土力学特性的试验研究[J]. 工程地质学报,2020,28(2):306-316.

    ZHANG K,TANG C S,LIU B,et al. Mechanical behavior of clayey soil treated by new one-phase MICP technique[J]. Journal of Engineering Geology,2020,28(2):306-316.(in Chinese with English abstract
    [11] 路桦铭,张智超,肖杨,等. 降雨条件下微生物技术治理崩岗侵蚀[J]. 高校地质学报,2021,27(6):731-737.

    LU H M,ZHANG Z C,XIAO Y,et al. Mitigating erosion of collapsing gully by microbial technology under rainfall conditions[J]. Geological Journal of China Universities,2021,27(6):731-737.(in Chinese with English abstract
    [12] WANG Y N,LI S K,LI Z Y,et al. Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator[J]. Acta Geotechnica,2023,18(6):3273-3285. doi: 10.1007/s11440-022-01791-3
    [13] 段金贵,王怀星,姚姬璇,等. 黄土坡面的微生物矿化加固及抗侵蚀性能试验研究[J]. 水土保持通报,2022,42(5):33-40.

    DUAN J G,WANG H X,YAO J X,et al. Experimental study on microbial mineralization reinforcement and erosion resistance of loess slope surface[J]. Bulletin of Soil and Water Conservation,2022,42(5):33-40.(in Chinese with English abstract
    [14] 尹黎阳,唐朝生,张龙. MICP联合纤维加筋改性钙质砂力学特性研究[J]. 高校地质学报,2021,27(6):679-686.

    YIN L Y,TANG C S,ZHANG L. Experimental study on mechanical behavior of micp-fiber reinforce treated calcareous sand[J]. Geological Journal of China Universities,2021,27(6):679-686.(in Chinese with English abstract
    [15] 刘汉龙,肖鹏,肖杨,等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文),2019,41(1):1-14.

    LIU H L,XIAO P,XIAO Y,et al. State of the art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering,2019,41(1):1-14.(in Chinese with English abstract
    [16] 钟壬琳,张平仓. 人工降雨和放水冲刷试验下红壤坡面径流与泥沙特征分析[J]. 长江科学院院报,2019,36(2):33-38.

    ZHONG R L,ZHANG P C. Characteristics of runoff and sediment yield on red soil slope under artificial rainfall and scouring[J]. Journal of Yangtze River Scientific Research Institute,2019,36(2):33-38.(in Chinese with English abstract
    [17] 马美景,王军光,郭忠录,等. 放水冲刷对红壤坡面侵蚀过程及溶质迁移特征的影响[J]. 土壤学报,2016,53(2):365-374.

    MA M J,WANG J G,GUO Z L,et al. Research on sediment and solute transport on red soil slope under simultaneous influence of scouring flow[J]. Acta Pedologica Sinica,2016,53(2):365-374.(in Chinese with English abstract
    [18] ZHANG H N,JIA C Q,WANG G H,et al. Physical-mechanical properties of microbially induced calcite precipitation-treated loess and treatment mechanism[J]. Journal of Mountain Science,2022,19(10):2952-2967. doi: 10.1007/s11629-022-7336-3
    [19] 师智勇,陈慧娥,苑晓青,等. 冻融循环对土体分散性的影响及微观机理分析[J]. 工程地质学报,2023,31(1):51-59.

    SHI Z Y,CHEN H E,YUAN X Q,et al. Effect of freezing-thawing cycle on soil dispersion and analysis of microscopic mechanism[J]. Journal of Engineering Geology,2023,31(1):51-59.(in Chinese with English abstract
    [20] 赵高文,樊恒辉,陈华,等. 蒙脱石对黏性土分散性的影响[J]. 岩土工程学报,2013,35(10):1928-1932.

    ZHAO G W,FAN H H,CHEN H,et al. Influence of montmorillonite on dispersivity of clayey soils[J]. Chinese Journal of Geotechnical Engineering,2013,35(10):1928-1932.(in Chinese with English abstract
    [21] 唐朝生,施斌,顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报,2011,19(6):875-881. doi: 10.3969/j.issn.1004-9665.2011.06.012

    TANG C S,SHI B,GU K. Experimental divestigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology,2011,19(6):875-881.(in Chinese with English abstract doi: 10.3969/j.issn.1004-9665.2011.06.012
    [22] DING Z,KONG B,WEI X,et al. Laboratory testing to research the micro-structure and dynamic characteristics of frozen–thawed marine soft soil[J]. Journal of Marine Science and Engineering,2019,7(4):85-103. doi: 10.3390/jmse7040085
    [23] XIE B L,ZHANG W Y,SUN X L,et al. Experimental study on the effects of freeze-thaw cycles on strength and microstructure of Xining region loess in China[J]. Buildings,2022,12(6):795-809. doi: 10.3390/buildings12060795
    [24] CHU Y P,ZHANG D M,SONG S Q,et al. Experimental study on the evolution of pore structure of coal samples under freeze-thaw[J]. Physics of Fluids,2023,35(3):1-13.
    [25] LIU B,TANG C S,PAN X H,et al. Potential drought mitigation through microbial induced calcite precipitation (MICP)[J]. Water Resources Research,2021,57(9):1-17.
    [26] LIU B,XIE Y H,TANG C S,et al. Bio-mediated method for improving surface erosion resistance of clayey soils[J]. Engineering Geology,2021,293:1-10.
    [27] 刘帅,朱杰勇,杨得虎,等. 不同降雨工况条件下的崩滑地质灾害危险性评价[J]. 地质科技通报,2024,43(2):253-267.

    LIU S,ZHU J Y,YANG D H,et al. Geological hazard assessment of collapse and landslide under different rainfall conditions[J]. Bulletin of Geological Science and Technology,2024,43(2):253-267.(in Chinese with English abstract
    [28] 阳帅,谭泽颖,陈宏信,等. 基于修正Green-Ampt模型的降雨诱发区域浅层斜坡失稳灾害分析[J]. 地质科技通报,2022,41(2):219-227.

    YANG S,TAN Z Y,CHEN H X,et al. Analysis of instability disaster of rainfall-induced shallow landslides at the regional scale based on the modified Green-Ampt model[J]. Bulletin of Geological Science and Technology,2022,41(2):219-227.(in Chinese with English abstract
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  293
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 录用日期:  2023-12-14
  • 修回日期:  2023-12-13
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回