留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NMR与CMP实验的致密砂岩孔喉结构表征方法

李浩 樊志强 谢雨芯 巩肖可 郝博斐 孙龙 雷小兰 闫健

李浩,樊志强,谢雨芯,等. 基于NMR与CMP实验的致密砂岩孔喉结构表征方法[J]. 地质科技通报,2025,44(1):25-35 doi: 10.19509/j.cnki.dzkq.tb20230484
引用本文: 李浩,樊志强,谢雨芯,等. 基于NMR与CMP实验的致密砂岩孔喉结构表征方法[J]. 地质科技通报,2025,44(1):25-35 doi: 10.19509/j.cnki.dzkq.tb20230484
LI Hao,FAN Zhiqiang,XIE Yuxin,et al. Characterization method of pore throat structure in dense sandstone based on NMR and CMP experiments[J]. Bulletin of Geological Science and Technology,2025,44(1):25-35 doi: 10.19509/j.cnki.dzkq.tb20230484
Citation: LI Hao,FAN Zhiqiang,XIE Yuxin,et al. Characterization method of pore throat structure in dense sandstone based on NMR and CMP experiments[J]. Bulletin of Geological Science and Technology,2025,44(1):25-35 doi: 10.19509/j.cnki.dzkq.tb20230484

基于NMR与CMP实验的致密砂岩孔喉结构表征方法

doi: 10.19509/j.cnki.dzkq.tb20230484
基金项目: 国家自然科学基金项目(52174031)
详细信息
    作者简介:

    李浩:E-mail:771489512@qq.com

    通讯作者:

    E-mail:yanjiangxasy@163.com

  • 中图分类号: P618.130.2+1

Characterization method of pore throat structure in dense sandstone based on NMR and CMP experiments

More Information
  • 摘要:

    致密砂岩储层孔隙结构复杂、纳米孔隙发育,需集成多种技术对孔隙结构进行综合表征,以更好地认识储层。在优选6块延长组长71储层代表性岩心基础上,采用场发射扫描电子显微镜(FESEM)、恒速压汞(CMP)和核磁共振(NMR)等方法,研究了岩心样品的孔隙类型及结构特征。采用CMP数据对NMR孔隙分布进行了修正,识别了喉道半径与孔隙半径的分布范围,建立了适用于致密砂岩的孔隙半径分类方法。研究结果表明,目标储层可动水与不可动水孔隙度之比仅为0.14~0.47,渗流能力差。将NMR与CMP数据相结合可精确识别出目标储层喉道半径中值为0.151~0.525 μm,孔隙半径中值为4.38~9.76 μm。孔隙内赋存水类型分为可动水、束缚水和黏土结合水,对应的饱和度平均值分别为23.4%、14.8%和9.4%。微小孔(T2<T2c1)、中孔(T2c1<T2<T2c2)和大孔(T2c2<T2)的平均孔隙度分别为3.12%、3.42%和1.35%。孔喉半径r2c1可作为储层渗流能力划分的评价指标,r2c1的降低会导致微小孔(即吸附孔)孔隙度的降低,以及中孔和大孔(即渗流孔)孔隙度的增加。研究成果为优选致密砂岩优质储层,提高致密油采收率提供了参考和借鉴。

     

  • 图 1  实验岩心SEM及薄片分析图像

    A. 粒间孔,铸体薄片,1号岩心;B. 长石溶蚀后形成的蜂窝状溶蚀孔,铸体薄片,1号岩心;C. 残余粒间孔和粒内孔,铸体薄片,2号岩心;D. 石英和绿泥石填充的粒间孔,SEM,2号岩心;E. 粒间溶蚀孔,SEM,2号岩心;F. 粒内长石溶孔,SEM,3号岩心;G. 微裂缝,SEM,3号岩心;H. 黏土矿物内的晶间微孔,SEM,5号岩心;I. 绿泥石与晶间微孔,以及树杈形孔喉,铸体薄片,6号岩心

    Figure 1.  Experimental core SEM and thin section analysis images

    图 2  实验岩心在完全饱和水下的T2谱分布

    Figure 2.  T2 spectrum distribution of experimental core under fully saturated water

    图 3  1号(a)和6号(b)岩心离心前后T2谱分布及T2截止值确定

    Figure 3.  T2 spectrum distribution and T2 cutoff determination before and after centrifugation of Core 1 (a) and Core 6 (b)

    图 4  1号(a)和6号(b)岩心CMP毛管压力曲线

    Figure 4.  CMP capillary pressure curves for Core 1 (a) and Core 6 (b)

    图 5  CMP获得实验岩心孔径(a)及孔喉比(b)分布曲线

    Figure 5.  Distribution curves of pore diameter (a) and pore throat ratio (b) for the experimental core were obtained through CMP

    图 6  CMP孔径分布与T2谱分布的重合关系

    Figure 6.  Coincidence between CMP pore size distribution and T2 spectral distribution

    图 7  CMP修正NMR数据后的孔隙与喉道半径分布(A、B、C点为拟合直线与NMR计算结果的交点)

    Figure 7.  Pore and throat radius distribution following CMP correction of NMR data

    图 8  1号(a)和6号(b)岩心孔喉半径分布(O为黏土结合水与束缚水区域分界点)

    Figure 8.  Distribution of pore size and throat size in Core 1 (a) and Core 6 (b)

    图 9  致密砂岩孔隙孔径分类方法(以1号岩心为例)

    Figure 9.  Classification method for pore size of dense sandstone (taking core 1 as an example)

    图 10  不同类型孔隙孔隙度与渗透率的关系

    Figure 10.  Relationship between porosity and permeability of different types of pores

    图 11  r2c1值与吸附孔和渗流孔孔隙度的关系

    Figure 11.  Relationship between the r2c1 value and the porosity of adsorption pores and seepage pores

    表  1  实验岩心物性参数及矿物组成

    Table  1.   Experimental core physical parameters and mineral composition

    岩心编号 物性参数 主要矿物类型及质量分数wB/%
    孔隙度/% 渗透率/10−3μm2 石英 钾长石 斜长石 方解石 白云石 黏土矿物 其他矿物
    1 7.89 0.0630 48.9 14.2 21.9 4.8 3.2 4.8 2.2
    2 7.97 0.0580 40.3 17.4 21.2 8.2 2.2 7.3 3.4
    3 9.32 0.0440 36.1 11.6 29.3 2.3 7.4 8.6 4.7
    4 6.53 0.0260 26.2 21.1 18.4 8.8 11.1 10.8 3.6
    5 8.58 0.0100 32.5 3.7 26.7 11.6 4.4 16.7 4.4
    6 5.73 0.0036 34.0 9.1 27.3 0 6.3 23.3 0
    均值 7.67 0.0340 36.3 12.9 24.1 6.0 5.8 11.9 3.1
      注:孔隙度为氦气法测量;渗透率为脉冲衰减法测定;其他矿物包括黄铁矿、菱铁矿和金红石等
    下载: 导出CSV

    表  2  实验岩心NMR参数

    Table  2.   Experimental cores NMR parameters

    岩心
    编号
    T2截止值/
    ms
    转换系数/
    (μm·ms−1
    可动水
    孔隙度/%
    不可动水
    孔隙度/%
    T2c1/
    ms
    T2c2/
    ms
    孔隙度/% 贡饱和度/%
    微小孔 中孔 大孔 可动水 束缚水 黏土
    结合水
    1 13.2 0.083 1.94 5.28 0.86 684.52 2.24 4.04 1.61 33.5 11.2 13.4
    2 17.2 0.072 2.26 4.86 1.32 232.18 2.61 3.57 1.71 29.3 19.1 7.7
    3 9.4 0.088 2.42 5.81 1.15 368.35 2.42 4.13 1.34 24.4 15.7 10.3
    4 20.6 0.059 1.37 4.46 2.68 164.43 3.48 2.87 1.54 18.8 20.2 7.7
    5 24.4 0.036 1.28 5.49 5.12 89.63 4.14 2.73 1.02 18.4 13.5 5.8
    6 32.8 0.052 0.62 4.32 4.67 113.23 3.84 3.18 0.87 15.7 8.8 11.6
    均值 19.6 0.065 1.65 5.04 2.63 275.39 3.12 3.42 1.35 23.4 14.8 9.4
      注:T2c1. 划分微小孔与中孔的弛豫时间;T2c2. 划分中孔与大孔的弛豫时间;下同
    下载: 导出CSV

    表  3  实验岩心CMP孔隙结构参数及结合NMR修正后的参数

    Table  3.   CMP pore structure parameters and NMR-corrected parameters of experimental cores

    岩心编号 CMP孔隙结构参数 NMR修正后的参数
    阈压/MPa 总进汞饱和度/% 孔隙进汞饱和度/% 喉道进汞饱和度/% 孔隙半径中值/μm 喉道半径中值/μm 孔喉比 孔隙半径中值/μm 孔喉比
    1 1.37 54.89 19.20 35.68 156.22 0.525 312.7 9.76 18.61
    2 1.14 54.84 22.83 32.00 141.18 0.380 389.8 7.43 19.54
    3 1.45 46.81 15.25 31.57 128.61 0.370 365.1 6.43 17.39
    4 1.63 42.29 13.86 28.43 120.84 0.317 399.9 6.04 19.04
    5 2.17 35.79 11.86 23.93 115.65 0.226 537.8 4.63 20.49
    6 2.43 34.62 7.01 27.61 109.61 0.151 764.2 4.38 29.11
    均值 1.70 44.87 15.00 29.87 128.69 0.328 461.6 6.45 20.70
    下载: 导出CSV
  • [1] 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质,2020,41(4):655-661.

    MA Y S, LI M W, CAI X Y, et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology,2020,41(4):655-661. (in Chinese with English abstract
    [2] 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发,2018,45(3):436-444.

    LU S F, LI J Q, ZHANG P F, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoir[J]. Petroleum Exploration and Development,2018,45(3):436-444. (in Chinese with English abstract
    [3] 黄兴, 李天太, 王香增, 等. 致密砂岩储层可动流体分布特征及其影响因素: 以鄂尔多斯盆地姬塬油田延长组长8储层为例[J]. 石油学报,2019,40(5):557-567.

    HUANG X, LI T T, WANG X Z, et al. Distribution characteristics and its influence factors of movable fluid in tight sandstone reservoir: A case study of Chang 8 oil layer of Yanchang Formation Jiyuan Oilfield, Ordos Basin[J]. Acta Petrolei Sinica,2019,40(5):557-567. (in Chinese with English abstract
    [4] 李源流, 郭彬程, 杨兆平, 等. 鄂尔多斯盆地麻地沟油区三叠系延长组长 61 亚段致密砂岩储层特征及评价[J]. 西安石油大学学报(自然科学版),2020,35(5):38-46.

    LI Y L, GUO B C, YANG Z P, et al. Characteristics and evaluation of tight sandstone reservoir in Chang 61 submember of Triassic Yanchang Formation in Madigou oil area, Ordos Basin[J]. Journal of Xi’ an Shiyou University (Natural Science Edition),2020,35(5):38-46. (in Chinese with English abstract
    [5] 刘翰林, 杨友运, 王凤琴, 等. 致密砂岩储集层微观结构特征及成因分析:以鄂尔多斯盆地陇东地区长6段和长8段为例[J]. 石油勘探与开发,2018,45(2):225-231.

    LIU H L, YAN Y Y, WANG F Q, et al. Micro pore and throat characteristics and origin of tight sandstone reservoirs: A case study of the Triassic Chang 6 and Chang 8 members in Longdong area, Ordos Basin, NW China[J]. Petroleum Exploration and Development,2018,45(2):225-231. (in Chinese with English abstract
    [6] ZHANG L C, LU S F, XIAO D S, et al. Pore structure characteristics of tight sandstones in the northern Songliao Basin, China[J]. Marine and Petroleum Geology,2017,88:170-180. doi: 10.1016/j.marpetgeo.2017.08.005
    [7] 肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发,2016,43(6):1049-1059. doi: 10.1016/S1876-3804(16)30122-7

    XIAO D S, LU S F, LU Z Y, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J]. Petroleum Exploration and Development,2016,43(6):1049-1059. (in Chinese with English abstract doi: 10.1016/S1876-3804(16)30122-7
    [8] 田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报,2012,33(3):419-427.

    TIAN H, ZHANG S C, LIU S B, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica,2012,33(3):419-427. (in Chinese with English abstract
    [9] 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学,2013,24(3):450-455.

    YANG F, NING Z F, KONG D T, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience,2013,24(3):450-455. (in Chinese with English abstract
    [10] 贾连超, 刘鹏飞, 袁丹, 等. 注CO2提高页岩吸附气采收率实验:以鄂尔多斯盆地延长组长7页岩气为例[J]. 大庆石油地质与开发,2021,40(2):152-159.

    JIA L C, LIU P F, YUAN D, et al. Experiment of enhancing the recovery of the shale adsorbed gas by CO2 injection: Taking Yanchang Formation Chang 7 shale gas in Ordos Basin as an example[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(2):152-159. (in Chinese with English abstract
    [11] 郎东江, 伦增珉, 吕成远, 等. 页岩油注二氧化碳提高采收率影响因素核磁共振实验[J]. 石油勘探与开发,2021,48(3):1-10.

    LANG D J, LUN Z M, LÜ C Y, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhanced shale oil recovery[J]. Petroleum Exploration and Development,2021,48(3):1-10. (in Chinese with English abstract
    [12] LYU C, NING Z, WANG Q, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy & Fuels,2018,32(2):1395-1405.
    [13] 夏玉磊, 兰建平, 姚伟. 致密储层微观孔喉结构及可动流体分布特征:以鄂尔多斯盆地东部神木地区盒8储层为例[J]. 地质科技通报, 2024, 43(2):41-51.

    XIA Y L, LAN J P, YAO W. Micro pore structure and movable fluid distribution characteristics of tight sandstone reservoir: Taking He 8 reservoir in Shemu area of eastern Ordos Basin as an example [J]. Bulletin of Geological Science and Technology, 2024, 43(2):41-51. (in Chinese with English abstract
    [14] 孟昆, 王胜建, 薛宗安, 等. 利用核磁共振资料定量评价页岩孔隙结构[J]. 波谱学杂志,2021,38(2):215-226.

    MENG K, WANG S J, XUE Z A, et al. Quantitative evaluation of shale pore structure using nuclear magnetic resonance data[J]. Chinese Journal of Magnetic Resonance,2021,38(2):215-226. (in Chinese with English abstract
    [15] 杜佳, 刘彦成, 白洁玢, 等. 基于波形指示模拟的致密砂岩储层预测[J]. 地质科技通报,2022,41(5):94-100.

    DU J, LIU Y C, BAI J B, et al. Prediction of tight sandstone reservoirs based on waveform indication simulation[J]. Bulletin of Geological Science and Technology,2022,41(5):94-100. (in Chinese with English abstract
    [16] 刘永. 基于核磁共振流态分析的页岩微纳米孔隙类型划分方法[D]. 北京: 中国地质大学(北京), 2018.

    LIU Y. A study of shale pore size classification by using low field nuclear magnetic resonance fluid typing method [D]. Beijing: China University of Geosciences (Beijing), 2018. (in Chinese with English abstract
    [17] 刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报,2021,40(1):57-68.

    LIU K, SHI W Z, WANG R, et al. Pore structure fractal characteristics and its relationship with reservoir properties of the First Member of Lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology,2021,40(1):57-68. (in Chinese with English abstract
    [18] WU H, ZHANG C, JI Y, et al. An improved method of characterizing the pore structure in tight oil reservoirs: Integrated NMR and constant-rate-controlled porosimetry data[J]. Journal of Petroleum Science and Engineering,2018,166:778-796. doi: 10.1016/j.petrol.2018.03.065
    [19] 汪新光, 张冲, 张辉, 等. 基于微观孔隙结构的低渗透砂岩储层分类评价[J]. 地质科技通报,2021,40(4):93-103.

    WANG X G, ZHANG C, ZHANG H, et al. Classification and evaluation of low-permeability sand reservoir based on micro-pore structure[J]. Bulletin of Geological Science and Technology,2021,40(4):93-103. (in Chinese with English abstract
    [20] DONG X, SHEN L W, LIU X, et al. NMR characterization of a tight sand's pore structures and fluid mobility: An experimental investigation for CO2 EOR potential[J]. Marine and Petroleum Geology,2020,118:104460. doi: 10.1016/j.marpetgeo.2020.104460
    [21] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids: Technical report[J]. Pure and Applied Chemistry,1994,66(8):1739-1758.
    [22] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock porse[J]. AAPG Bulletin,2012,96(6):1071-1098.
    [23] 代全齐, 罗群, 张晨, 等. 基于核磁共振新参数的致密油砂岩储层孔隙结构特征: 以鄂尔多斯盆地延长组7段为例[J]. 石油学报,2016,37(7):887-897.

    DAI Q Q, LUO Q, ZHANG C, et al. Pore structure characteristics of tight-oil sandstone reservoir based on a new parameter measured by NMR experiment: A case study of Seven Member in Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica,2016,37(7):887-897. (in Chinese with English abstract
    [24] 王晓雯. 致密油藏储层敏感性评价及主控因素研究[J]. 特种油气藏,2021,28(1):103-110.

    WANG X W. Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J]. Special Oil & Gas Reservoirs,2021,28(1):103-110. (in Chinese with English abstract
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  386
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 录用日期:  2023-11-06
  • 修回日期:  2023-11-05
  • 网络出版日期:  2024-04-24

目录

    /

    返回文章
    返回