留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

澳大利亚大陆地壳垂向形变的GNSS影像学分析

宋舜跃 李水平 王欣 陶庭叶 朱勇超 屈小川

宋舜跃,李水平,王欣,等. 澳大利亚大陆地壳垂向形变的GNSS影像学分析[J]. 地质科技通报,2025,44(1):298-307 doi: 10.19509/j.cnki.dzkq.tb20230487
引用本文: 宋舜跃,李水平,王欣,等. 澳大利亚大陆地壳垂向形变的GNSS影像学分析[J]. 地质科技通报,2025,44(1):298-307 doi: 10.19509/j.cnki.dzkq.tb20230487
SONG Shunyue,LI Shuiping,WANG Xin,et al. GNSS imaging analysis of vertical deformation in Australian continental crust[J]. Bulletin of Geological Science and Technology,2025,44(1):298-307 doi: 10.19509/j.cnki.dzkq.tb20230487
Citation: SONG Shunyue,LI Shuiping,WANG Xin,et al. GNSS imaging analysis of vertical deformation in Australian continental crust[J]. Bulletin of Geological Science and Technology,2025,44(1):298-307 doi: 10.19509/j.cnki.dzkq.tb20230487

澳大利亚大陆地壳垂向形变的GNSS影像学分析

doi: 10.19509/j.cnki.dzkq.tb20230487
基金项目: 国家自然科学基金项目(42004001);武汉引力与固体潮国家野外科学观测研究站开放基金项目(WHYWZ202107);中央高校基本科研业费专项(JZ2022HGTB0268)
详细信息
    作者简介:

    宋舜跃:E-mail:songshunyue123@163.com

    通讯作者:

    E-mail:lishuiping@hfut.edu.cn

  • 中图分类号: P407

GNSS imaging analysis of vertical deformation in Australian continental crust

More Information
  • 摘要:

    在地壳垂向形变监测中全球导航卫星系统(GNSS)技术和合成孔径雷达干涉测量(InSAR)技术分别存在空间分辨率和时间分辨率不足的问题,而GNSS影像学方法基于离散的GNSS站点速度生成地壳垂直运动的图像,可以直接揭示地壳垂直运动的连续空间特性。使用GNSS影像学方法,研究了澳大利亚大陆地壳垂向形变,并通过棋盘格检验和交叉检验的方法对GNSS地壳垂直运动影像的可靠性进行了分析。结果表明GNSS影像学方法可以有效地剔除一些粗差的影响,并减少GNSS地壳垂直运动影像中出现零碎图斑和规则圆弧形突变边缘的问题,但同时也会剔除掉一些峰值和突变值,从而使生成的影像出现过度平滑的问题。GNSS地壳垂直运动影像表明澳大利亚将近98%的地区正在沉降,只有在澳大利亚北部部分地区和东部极小部分地区地壳呈上升运动,沉降和上升的量级基本在−3~1 mm/a之间。所有地区的垂直运动平均值为−0.76 mm/a,中值为−0.72 mm/a。本研究证实GNSS影像学方法具有合理性与正确性,GNSS地壳垂直运动影像能够准确获取大范围、高时空分辨率的地壳垂向形变,有助于揭示区域地壳垂向形变时空变化的细节特征。

     

  • 图 1  705个站点的MIDAS垂直速度直方图(a)和垂直速度不确定度直方图(b)

    Figure 1.  MIDAS vertical velocity histogram (a) and vertical velocity uncertainty histogram (b) for 705 sites

    图 2  所有站点的MIDAS垂直速度(a)、MSF(median spatial filter)速度(b)和两者速度差(c)以及站点形成的球面Delaunay三角网(d)

    Figure 2.  MIDAS vertical velocity (a), MSF speed (b) and the difference between them (c) at all sites and the spherical Delaunay triangulation network among the sites (d)

    图 3  站点间距离直方图(a)、站点间距离与速度差的关系(b)和空间结构函数(c)

    Figure 3.  Inter-site distance histogram (a), relationship between inter-site distance and speed difference (b), and spatial structure function (c)

    图 4  使用GNSS成像方法生成的地壳垂直运动影像(a)和相应的不确定度影像(b)、未经过MSF滤波生成的地壳垂直运动影像(c)和相应的不确定度影像(d)、采用非球面三角网生成的地壳垂直运动影像(e)和相应的不确定度影像(f)

    Figure 4.  Vertical crustal movement image (a) and corresponding uncertainty image (b) generated by GNSS imaging method, vertical crustal movement image (c) and corresponding uncertainty image (d) generated without MSF filtering, and vertical crustal movement image (e) and corresponding uncertainty image (f) generated by aspherical triangulation network

    图 5  虚拟的棋盘状速度场(a)、运用GNSS影像学方法生成的速度影像(b)和假设速度不确定度为1 mm/a生成的速度影像(c)

    Figure 5.  Virtual checkerboard velocity field (a), velocity image generated using GNSS imaging method (b), and velocity image generated assuming velocity uncertainty of 1 mm/a (c)

    图 6  所有站点恢复速度与原棋盘速度的差值(a)、A区域站点恢复速度与原棋盘速度的差值(b)和B区域站点恢复速度与原棋盘速度的差值(c)的统计结果

    Figure 6.  Statistical results of the difference between the recovery speed of all sites and the original board speed (a), the difference between the recovery speed of sites in Zone A and the original board speed (b), and the difference between the recovery speed of sites in Zone B and the original board speed (c)

    图 7  已知353个站点的位置分布及速度(a)、用已知的数据应用GNSS影像学方法生成GNSS影像(b)和估计值与原始未知数据的比较(c)

    Figure 7.  Location distribution and velocity of 353 known sites (a), GNSS image generation using GNSS imaging method with known data (b) and comparison of estimates with original unknown data (c)

    图 8  所有站点交叉验证的差值(a)、A区域站点交叉验证的差值(b)和B区域站点交叉验证的差值(c)的统计结果

    Figure 8.  Statistical results of the difference in cross-validation for all sites (a), the difference in cross-validation for Zone A sites (b), and the difference in cross-validation for Zone B sites (c)

  • [1] LARSON K M,FREYMUELLER J T,PHILIPSEN S. Global plate velocities from the Global Positioning System[J]. Journal of Geophysical Research(Solid Earth),1997,102:9961-9981.
    [2] HUANG H,MENG L S,BURGMANN R,et al. Early aftershocks and afterslip surrounding the 2015 Mw 8.4 Illapel rupture[J]. Earth and Planetary Science Letters,2017,457:282-291.
    [3] 张占忠,陈富强,刘亚林,等. 基于遥感技术的嘉黎江巴变形体稳定性评价与分析[J]. 地质科技通报,2023,42(3):28-37.

    ZHANG Z Z,CHEN F Q,LIU Y L,et al. Stability evaluation and analysis of the Jiangba deformed body in Jiali County based on remote sensing technology[J]. Bulletin of Geological Science and Technology,2023,42(3):28-37. (in Chinese with English abstract
    [4] 董佳慧,牛瑞卿,亓梦茹,等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报,2022,41(2):187-196.

    DONG J H,NIU R Q,QI M G,et al. Identification of geological hazards based on the combination of InSAR technology and disaster background indicators[J]. Bulletin of Geological Science and Technology,2022,41(2):187-196. (in Chinese with English abstract
    [5] SHEN Z K,JACKSON D D,GE B X. Crustal deformation across and beyond the Los Aangeles Basin from geodetic measurements[J]. Journal of Geophysical Research( Solid Earth),1996,101:27957-27980.
    [6] WANG M,SHEN Z K. Present-day crustal deformation of continental China derived from GNSS and its tectonic implications[J]. Journal of Geophysical Research(Solid Earth),2020,125:e2019JB018774.
    [7] 谭凯,赵斌,张彩红,等. GPS和InSAR同震形变约束的尼泊尔Mw7.9和Mw7.3地震破裂滑动分布[J]. 地球物理学报,2016,59(6):2080-2093. doi: 10.6038/cjg20160614

    TAN K,ZHAO B,ZHANG C H,et al. Rupture models of the Nepal Mw7.9 earthquake and Mw7.3 aftrershock constrained by GPS and InSAR coseismic deformations[J]. Chinese Journal of Geophysics,2016,59(6):2080-2093. (in Chinese with English abstract doi: 10.6038/cjg20160614
    [8] 许才军,何平,温扬茂,等. InSAR技术及应用研究进展[J]. 测绘地理信息,2015,40(2):1-9.

    XU C J,HE P,WEN Y M,et al. Recent advances InSAR interferometry and its applications[J]. Journal of Geomatics,2015,40(2):1-9. (in Chinese with English abstract
    [9] 黄宇,杨荣森,韩晓东,等. 基于定向半变异函数的裂隙网络空间变异性分析[J]. 地质科技通报,2023,42(2):186-193.

    HUANG Y,YANG R S,HAN X D,et al. Analysis of the spatial variability on a fracture network based on an oriented semivariogram[J]. Bulletin of Geological Science and Technology,2023,42(2):186-193. (in Chinese with English abstract
    [10] HAMMOND W C,BLEWITT G,KREEMER C. GPS imaging of vertical land motion in California and Nevada:Implications for Sierra Nevada uplift[J]. Journal of Geophysical Research( Solid Earth),2016,121:7681-7703.
    [11] PAN Y,HAMMOND W C,DING H,et al. GPS imaging of vertical bedrock displacements:Quantification of two-dimensional vertical crustal deformation in China[J]. Journal of Geophysical Research(Solid Earth),2021,126:e2020JB020951.
    [12] XIANG Y,YUE J,LIU G,et al. Characterizing the spatial patterns of vertical crustal deformations over the South American Continent based on GNSS imaging[J]. Pure and Applied Geophysics,2022,179:3569-3587.
    [13] 周晓慧,杨艺林,姜卫平,等. GNSS影像及其时空特征初探[J]. 地球物理学报,2020,63(1):155-171. doi: 10.6038/cjg2020M0473

    ZHOU X H,YANG Y L,JIANG W P,et al. Preliminary spatial temporal pattern of vertical deformation revealed by GNSS imaging[J]. Chinese Journal of Geophysics,2020,63(1):155-171. (in Chinese with English abstract doi: 10.6038/cjg2020M0473
    [14] BLEWITT G,KREEMER C,HAMMOND W C,et al. MIDAS robust trend estimator for accurate GPS station velocities without step detection[J]. Journal of Geophysical Research(Solid Earth),2016,121:2054-2068.
    [15] THEIL H. A rank-invariant method of linear and polynomial regression analysis[J]. Indagationes Mathematicae,1950,12:85-91.
    [16] SEN P K. Estimates of the regression coefficient based on Kendall's tau[J]. American Statistical Association,1968,63:1379-1389. doi: 10.1080/01621459.1968.10480934
    [17] DELAUNAY B. Sur la sphère vide[J]. Bulletin of the Academy of Sciences of the USSR,1934,7:793-800.
    [18] RIDDELL A R,KING M A,WATSON C S. Present-day vertical land motion of Australia from GPS observations and geophysical models[J]. Journal of Geophysical Research(Solid Earth),2020,125:e2019JB018034.
    [19] HAMMOND W C,BLEWITT G,KREEMER C,et al. GPS imaging of global vertical land motion for studies of sea level rise[J]. Journal of Geophysical Research(Solid Earth),2021,126:e2021JB022355.
  • 加载中
图(8)
计量
  • 文章访问数:  29
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 录用日期:  2023-10-18
  • 修回日期:  2023-10-11
  • 网络出版日期:  2025-02-18

目录

    /

    返回文章
    返回