留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柴达木盆地西部英雄岭页岩天文旋回识别与高沉积速率下的沉积充填响应特征

盛军 薛世团 吕思锦 张彩燕 杨晓菁 李雅楠 郭笑 王转转

盛军,薛世团,吕思锦,等. 柴达木盆地西部英雄岭页岩天文旋回识别与高沉积速率下的沉积充填响应特征[J]. 地质科技通报,2025,44(1):48-63 doi: 10.19509/j.cnki.dzkq.tb20230492
引用本文: 盛军,薛世团,吕思锦,等. 柴达木盆地西部英雄岭页岩天文旋回识别与高沉积速率下的沉积充填响应特征[J]. 地质科技通报,2025,44(1):48-63 doi: 10.19509/j.cnki.dzkq.tb20230492
SHENG Jun,XUE Shituan,LÜ Sijin,et al. Astrocycle identification and high sedimentation rates sedimentary filling response characteristics in the Yingxiongling shale of western Qaidam Basin[J]. Bulletin of Geological Science and Technology,2025,44(1):48-63 doi: 10.19509/j.cnki.dzkq.tb20230492
Citation: SHENG Jun,XUE Shituan,LÜ Sijin,et al. Astrocycle identification and high sedimentation rates sedimentary filling response characteristics in the Yingxiongling shale of western Qaidam Basin[J]. Bulletin of Geological Science and Technology,2025,44(1):48-63 doi: 10.19509/j.cnki.dzkq.tb20230492

柴达木盆地西部英雄岭页岩天文旋回识别与高沉积速率下的沉积充填响应特征

doi: 10.19509/j.cnki.dzkq.tb20230492
基金项目: 中国石油勘探与生产分公司科技项目“柴达木盆地页岩油综合地质研究、技术攻关与现场试验”(2022KT0304)
详细信息
    通讯作者:

    E-mail:shengjunqh@petrochina.com.cn

  • 中图分类号: P618.12

Astrocycle identification and high sedimentation rates sedimentary filling response characteristics in the Yingxiongling shale of western Qaidam Basin

More Information
  • 摘要:

    柴达木盆地英雄岭页岩油勘探开发潜力巨大,但目前在旋回地层学方面的工作较为薄弱。为了明确英雄岭页岩的天文旋回沉积响应特征,通过对英雄岭页岩发育的下干柴沟组上段地层开展了4口井的频谱分析,综合岩心、测井、地球化学分析等方面的成果,在该套地层中识别出多组米兰科维奇旋回,并依据404.858 ka的长偏心率周期建立了英雄岭页岩“浮动”天文标尺,明确了英雄岭页岩的沉积速率与沉积充填特征。研究表明:英雄岭页岩沉积时间约为4.86 Ma、平均沉积速率达到340.44 m/Ma,高沉积速率是英雄岭页岩的重要特征之一。基于长偏心率周期分析的总有机碳含量沉积响应特征表明柴达木盆地英雄岭页岩的有机碳富集程度受沉积速率控制明显,随着沉积速率的增大,总有机碳含量呈升高趋势,当沉积速率超过450 m/Ma时,受到碎屑稀释效应影响,总有机碳含量出现显著下降。基于单一长偏心率周期的岁差旋回周期对沉积构造响应模式分析表明,当岁差参数处于最小值时,主要发育贫有机质层状灰云岩;当岁差参数处于最大值时,主要发育富有机质纹层状灰云岩。英雄岭页岩表现出的这种明显轨道强迫响应,将有助于页岩油有利层段预测,可为今后英雄岭页岩油高效勘探开发提供一些新思路。

     

  • 图 1  柴达木盆地英雄岭页岩油藏区域位置(a)与地层综合柱状图(b)(据文献[19]修改)

    Figure 1.  Comprehensive histogram of the location (a) and stratigraphy (b) of the Yingxiongling shale reservoir in the Qaidam Basin

    图 2  英雄岭构造西段Ⅴ油组沉积微相图

    Figure 2.  Sedimentary microfacies map of the Ⅴ Formation in the western section of the Yingxiongling structural belt

    图 3  基于La2010模型提取的古近系下干柴沟组上段轨道周期变化曲线[31]

    Figure 3.  Orbital period variation curve of the Upper Member of the Lower Ganchaigou Formation in Paleogene system extracted using La2010 model

    图 4  基于La2010模型的轨道周期变化曲线Redfit频谱分析结果

    Figure 4.  Redfit spectrum analysis results for the orbital period change curve based on the La2010 model

    图 5  英雄岭页岩柴907井GR曲线REDFIT与FFT频谱分析结果

    a. REDFIT频谱分析曲线;b. REDFIT频谱分析曲线;c. FFT频谱分析图

    Figure 5.  REDFIT and FFT spectral analysis results of the GR curve of Chai 907 well in Yingxiongling shale

    图 6  英雄岭页岩下干柴沟组上段天文年代标尺(1~12为旋回个数,下同)

    Figure 6.  Astronomical age scale of the upper section of the Lower Ganchaigou Formation within the Yingxiongling shale

    图 7  英雄岭页岩井间沉积速率对比

    Figure 7.  Comparison of sedimentation rates among wells in the Yingxiongling shale

    图 8  英雄岭页岩典型年纹层镜下特征

    a. 柴2-4井2820.06 m;b. 柴2-4井2848.88 m;c. 狮60井3336.55 m;d. 柴906井3225.43 m;e. 柴906井3237.18 m;f. 狮60井3454.61 m

    Figure 8.  Typical varve of the Yingxiongling shale observed under microscopy

    图 9  英雄岭页岩典型井w(TOC)测试结果

    a. w(TOC)测试结果分布图;b. w(TOC)与沉积速率交会图。A,B,C为分区代号

    Figure 9.  Distribution of TOC content test results for typical wells in the Yingxiongling shale

    图 10  柴908井TOC分析结果与岁差频率周期(P1~P9为岁差周期;Ⅰ~Ⅴ,Ⅶ~Ⅷ为w(TOC)分段编号)

    Figure 10.  TOC analysis results and precession frequency period for Chai 908 well

    图 11  柴908井岩心照片

    a. 柴908井在相对高沉积速率下(727.7 m/Ma)的岩心照片(以厚层状灰云岩为主夹块状砂质条带);b. 柴908井在相对低沉积速率下(413.26 m/Ma)的岩心照片(以纹层状灰云岩为主)

    Figure 11.  Core photos of Chai 908 well

    图 12  英雄岭页岩岁差旋回影响的沉积响应模式

    Figure 12.  Sedimentary response mode affected by the precession cycle of the Yingxiongling shale

    表  1  柴达木盆地英雄岭页岩40~30 Ma期间理论天文周期比例表

    Table  1.   Theoretical astronomical cycle ratio of the Yingxiongling shale in the Qaidam Basin during the 40-30 Ma period

    天文周期 时间/ka 岁差/("·a−1) 轴斜率 偏心率
    18.192 22.262 53.996 57.241 62.305 95.238 124.688 404.858
    偏心率 404.858 22.255 18.186 7.498 7.073 6.498 4.251 3.247 1.000
    124.688 6.854 5.601 2.309 2.178 2.001 1.309 1.000
    95.238 5.235 4.278 1.764 1.664 1.529 1.000    
    轴斜率 62.305 3.425 2.799 1.154 1.088 1.000
    57.241 3.147 2.571 1.060 1.000
    53.996 2.968 2.425 1.000          
    岁差("·a−1) 22.262 1.224 1.000            
    18.192 1.000              
    下载: 导出CSV

    表  2  英雄岭页岩油井深度序列优势旋回频率与天文理论轨道周期对照表

    Table  2.   Comparison of dominant cycle frequency and astronomical theoretical orbital period of depth sequence in Yingxiongling shale oil well

    理论轨道
    周期/ka
    理论轨道
    周期比例
    柴907井 柴13井 柴10井 柴908井
    旋回地层
    厚度/m
    旋回地层
    比例
    误差/% 旋回地层
    厚度/m
    旋回地层
    比例
    误差/% 旋回地层
    厚度/m
    旋回地层
    比例
    误差/% 旋回地层
    厚度/m
    旋回地层
    比例
    误差/%
    404.858 1.000 138.63 1.000 102.04 1.000 102.669 1.000 137.005 1.000
    124.688 3.247 44.42 3.120 3.89 30.76 3.317 2.16 30.608 3.354 3.31 43.424 3.155 2.83
    95.238 4.251 32.59 4.253 0.05 23.23 4.393 3.34 24.183 4.246 0.13 32.349 4.235 0.37
    62.305 6.498 21.39 6.482 0.25 16.06 6.353 2.24 15.702 6.539 0.62 20.796 6.588 1.39
    57.241 7.073 19.26 7.199 1.78 14.49 7.040 0.46 14.566 7.049 0.34 19.148 7.155 1.16
    53.996 7.498 18.47 7.506 0.11 13.64 7.482 0.21 13.485 7.613 1.54 17.841 7.679 2.42
    22.262 18.186 7.89 17.564 3.42 6.25 16.326 10.23 6.692 15.343 15.63 8.404 16.302 10.36
    下载: 导出CSV

    表  3  柴达木盆地英雄岭页岩与国内其他盆地沉积速率对比

    Table  3.   Comparison of sedimentary rates between the Yingxiongling shale in the Qaidam Basin and other domestic basins

    盆地 层段 沉积速率/(m·Ma−1 数据来源
    松辽盆地 青一段 86.96 文献[47]
    青一段 85.1~99.02 文献[43]
    登二段 162 文献[48]
    鄂尔多斯盆地 长7段 26.1 文献[46]
    二连盆地 腾格尔组 44~145 文献[45]
    珠江口盆地 珠海组 72.5~165 文献[44]
    恩平组 80~187.5
    文昌组 78.8~166.3
    渤海湾盆地 沙四上亚段 105~147 文献[9]
    沙三下亚段 78.5~86.6 文献[14]
    下载: 导出CSV
  • [1] HAYS J D,IMBRIE J,SHACKLETON N J. Variations in the Earth's orbit:Pacemaker of the ice ages[J]. Science,1976,194:1121-1132. doi: 10.1126/science.194.4270.1121
    [2] SHACKLETON N J,BERGER A,PELTIER W R. An alternative astronomical calibration of the Lower Pleistocene timescale based on ODP Site 677[J]. Transactions of the Royal Society of Edinburgh(Earth Sciences),1990,81(4):251-261. doi: 10.1017/S0263593300020782
    [3] HILGEN F J,LOURENS L J,VANDAM J A. The Neogene period[J]. The Geological Time Scale,2012,2:923-978.
    [4] FISCHER A G,DE BOER P L,PREMOLI SILVA I. Cyclostratigraphy[M]// Ginsburg R N,Beaudoin B. Global sedimentary geology program:Cretaceous resources,events,and rhythms. [S. l. ]:Kluwer Academic Publishers,1988:139-172.
    [5] 陈代钊. 旋回地层:一个正在发展中的理论[J]. 第四纪研究,2000,20(2):186-195. doi: 10.3321/j.issn:1001-7410.2000.02.010

    CHEN D Z. Cyclostratigraphy:A developing theory[J]. Quaternary Sciences,2000,20(2):186-195. doi: 10.3321/j.issn:1001-7410.2000.02.010
    [6] CROWLEY T J. Paleoclimate:Cycles,cycles everywhere[J]. Science,2002,295:1473-1474. doi: 10.1126/science.1069617
    [7] FISCHER A G. Cyclostratigraphic :Approach to Earth’s history:An introduction[J]. Special Publications of Sepm.,2004,81:5-13.
    [8] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学(中国地质大学学报),2011,36(3):410-428.

    WU H C,ZHANG S H,FENG Q L,et al. Theoretical basis ,research advancement and prospects of cyclostratigraphy[J]. Earth Science(Journal of China University of Geosciences),2011,36(3) :410-428. (in Chinese with English abstract
    [9] 金忠慧. 东营凹陷古近系沙四上亚段细粒岩沉积环境研究[D]. 北京:中国地质大学 (北京),2007.

    JING Z H. The study on sedimentary environment of fine grained rocks of the Upper Fourth Member of Paleogene Shahejie Formation,Dongying Sag[D]. Beijing:China University of Geosciences(Beijing),2007. (in Chinese with English abstract
    [10] 徐道一,韩延本,李国辉,等. 天文地层学的兴起[J]. 地层学杂志,2006,30(4):323-326. doi: 10.3969/j.issn.0253-4959.2006.04.004

    XU D Y,HAN Y B,LI G H,et al. The rise of astrostratigraphy[J]. Journal of Stratigraphy,2006,30(4):323-326. (in Chinese with English abstract doi: 10.3969/j.issn.0253-4959.2006.04.004
    [11] 彭军,于乐丹,许天宇,等. 天文地层学研究程序及其在渤海湾盆地东营凹陷的应用实例分析[J]. 石油与天然气地质,2022,43(6):1292-1308. doi: 10.11743/ogg20220602

    PENG J,YU L D,XU T Y,et al. Research procedure of astrostratigraphy and case study of Dongying Sag,Bohai Bay Basin[J]. Oil & Gas Geology,2022,43(6):1292-1308. (in Chinese with English abstract doi: 10.11743/ogg20220602
    [12] 宋翠玉,吕大炜. 米兰科维奇旋回时间序列分析法研究进展[J]. 沉积学报,2022,40(2):380-395.

    SONG C Y,LÜ D W. Advances in time series analysis methods for Milankovitch cycles[J]. Acta Sedimentologica Sinica,2022,40(2):380-395. (in Chinese with English abstract
    [13] 张喜,张廷山,赵晓明,等天文轨道周期及火山活动对中上扬子区晚奥陶世-早志留世有机碳聚集的影响[J]. 石油勘探与开发,2021,48(4),732-744.

    ZHANG X,ZHANG T S,ZHAO X M,et al. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician–Early Silurian in the Upper Yangtze area,South China[J]. Petroleum Exploration and Development,2021,48(4),732-744. (in Chinese with English abstract
    [14] 张若琳,金思丁. 渤海湾盆地沾化凹陷罗69井沙三下亚段旋回地层学研究[J]. 中南大学学报(自然科学版),2021,52(5):1517-1531.

    ZHANG R L,JING S D. Cyclostratigraphy research on Lower Member 3 of Shahejie Formation in Well Luo 69 in Zhanhua Sag,Bohai Bay Basin[J]. Journal of Central South University (Science and Technology),2021,52(5):1517-1531. (in Chinese with English abstract
    [15] 周靖皓,鲜本忠,张建国,等. 高频旋回地层约束下的湖相页岩有机质富集规律:以东营凹陷古近系沙三下亚段为例[J]. 古地理学报,2002,24(4):759-770.

    ZHOU J H,XIAN B Z,ZHANG J G,et al. Organic matter enrichment law of lacustrine shale constrained by high resolution cyclostratigraphy:A case study from the lower sub-member of Member 3 of Paleogene Shahejie Formation,Dongying Sag[J]. Journal of Palaeogeography ( Chinese Edition),2002,24(4):759-770. (in Chinese with English abstract
    [16] 朱春霞,张尚锋,王雅宁,等. 陆丰凹陷韩江组旋回地层学分析及天文年代标尺的建立[J]. 海洋地质前沿,2022,38(4):42-52.

    ZHUN C X,ZHANG S F,WANG Y N,et al. Cyclical stratigraphic analysis and establishment of astronomical chronograph of Hanjiang Formation in Lufeng Sag[J]. Marine Geology Frontiers,2022,38(4):42-52. (in Chinese with English abstract
    [17] 徐敬领,霍家庆,宋连腾,等. 基于测井数据的米氏旋回分析及浮动天文年代标尺的建立[J]. 地球物理学报,2022,65(7):2766-2778.

    XU J L,HUO J Q,SONG L T,et al. Analysis of Milankovitch cycles and establishment of floating astronomical date scale based on well-logging data[J]. Chinese J. Geophys. ,2022,65(7):2766-2778. (in Chinese with English abstract
    [18] 李国欣,朱如凯,张永庶,等. 柴达木盆地英雄岭页岩油地质特征,评价标准及发现意义[J]. 石油勘探与开发,2022,49(1):18-31. doi: 10.11698/PED.2022.01.02

    LI G X,ZHU R K,ZHANG Y S,et al. Geological characteristics,evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin,NW China[J]. Petroleum Exploration and Development,2022,49(1):18-31. (in Chinese with English abstract doi: 10.11698/PED.2022.01.02
    [19] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的高精度旋回识别与划分:以南图尔盖盆地Ary301井中侏罗统为例[J]. 沉积学报,2017,35(3):436-448.

    SHI J Y,JING Z J,LIU Q Y,et al. Recognition and division of high-resolution sequences based on the Milankovitch theory:A case study from the Middle Jurassic of Well Ary301 in the south Turgay Basin[J]. Acta Sedimentologica Sinica,2017,35(3),436-448. (in Chinese with English abstract
    [20] 李国欣,伍坤宇,朱如凯,等. 巨厚高原山地式页岩油藏的富集模式与高效动用方式:以柴达木盆地英雄岭页岩油藏为例[J]. 石油学报,2023,44(1):144-157. doi: 10.7623/syxb202301009

    LI G X,WU K Y,ZHU R K,et al. Enrichment model and high-efficiency production of thick plateau mountainous shale oil reservoir:A case study of the Yingxiongling shale oil reservoir in Qaidam Basin[J]. Acta Petrolei Sinica,2023,44(1):144-157. (in Chinese with English abstract doi: 10.7623/syxb202301009
    [21] 余辉龙,邓宏文,胡勇. 从古地磁资料看柴达木盆地古构造环境[J]. 石油勘探与开发,2002,29(6):41-44. doi: 10.3321/j.issn:1000-0747.2002.06.013

    YU H L,DENG H W,HU Y. Paleo-structural environment study by paleomagnetic data in Qaidam Basin[J]. Petroleum Exploration and Development,2002,29(6):41-44. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0747.2002.06.013
    [22] 黄成刚,常海燕,崔俊,等. 柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J]. 石油学报,2017,38(11):1230-1243.

    HUANG C G,CHANG H Y,CUI J,et al. Oligocene sedimentary characteristics and hydro carbon accumulation model in the western Qaidam Basin[J]. Acta Petrolei Sinica,2017,38(11):1230-1243. (in Chinese with English abstract
    [23] RICHARD B STOTHERS. Terrestrial record of the Solar system's oscillation about the galactic plane[J]. Nature,1985,317:338-341. doi: 10.1038/317338a0
    [24] NAPIER W M. Evidence for cometary bombardment episodes[J]. Mon. Not. R. Astron. Soc.,2006,366:977-982. doi: 10.1111/j.1365-2966.2005.09851.x
    [25] SHAVIV N J,PROKOPH A,VEIZER J. Is the solar system’s galactic motion imprinted in the Phanerozoic climate?[J]. Nature Publishing Group,2015,4:6150.
    [26] PUETZ S J,PROKOPH A,BORCHARDT G,et al. Evidence of synchronous,decadal to billion-year cycles in geological,genetic,and astronomical events[J]. Chaos Solitons Fractals,2014,62/63:55-75. doi: 10.1016/j.chaos.2014.04.001
    [27] PUETZ S J,CONDIE K C. A review of methods used to test periodicity of natural processes with a special focus on harmonic periodicities found in global U-Pb detrital zircon age distributions[J]. Earth-Sci. Rev.,2022,224:103885. doi: 10.1016/j.earscirev.2021.103885
    [28] PROKOPH A,PUETZ S J. Period-tripling and fractal features in multi-billion year geological records[J]. Math. Geosci.,2015,47:501-520. doi: 10.1007/s11004-015-9593-y
    [29] 张瑞,金之钧,GILLMAN M,等. 太阳系长期旋回在中生代沉积盆地中的记录[J]. 中国科学(地球科学),2023,53(2):345-362.

    ZHANG R,JING Z J,GILLMAN M,et al. Long term cycles of the Solar system recorded in Mesozoic sedimentary basins[J]. Science in China (Earth Sciences),2023,53(2):345-362. (in Chinese with English abstract
    [30] 吴怀春,房强. 旋回地层学和天文时间带[J]. 地层学杂志,2020,44(3):227-238.

    WU H C,FANG Q. Cyclostratigraphy and astrochronozones[J]. Journal of Stratigraphy,2020,44(3):227-238. (in Chinese with English abstract
    [31] LASKAR J,FIENGA A,GASTINEAU M,et al. La2010:A new orbital solution for the long term motion of the Earth[J]. Astronomy Astrophysics,2011,532(2):784-785.
    [32] 林铁锋,白云风,赵莹,等. 松辽盆地古龙凹陷青一段细粒沉积岩旋回地层分析及沉积充填响应特征[J]. 大庆石油地质与开发,2021,40(5):29-39.

    LIN T F,BAI Y F,ZHAO Y,et al. Cyclic stratigraphy of fine-grained sedimentary rocks and sedimentary filling response characteristics of Member Qing-1 in Gulong Sag,Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(5):29-39. (in Chinese with English abstract
    [33] LANCI L,GALEOTTI S,RATCLIFFE K,et al. Astronomically forced cycles in Middle Permian fluvial sediments from Karoo Basin (South Africa) [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,596:596-604.
    [34] HINNOV L A. Cyclostratigraphy and astrochronology in 2018[J]. Cyclostratigraphy and Astrochronology,2018(3):1-80.
    [35] 石巨业,金之钧,刘全有,等. 天文旋回在页岩油勘探及富有机质页岩地层等时对比中的应用[J]. 地学前缘,2023,30(4):142-151.

    SHI J Y,JING Z J,LIU Q Y,et al. Application of astronomicalcycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks[J]. Earth Science Frontiers,2023,30(4):142-151. (in Chinese with English abstract
    [36] 田军,吴怀春,黄春菊,等. 从40万年长偏心率周期看米兰科维奇理论[J]. 地球科学,2022,47(10):3543-3568.

    TIAN J,WU H C,HUANG C J,et al. Revisiting the Milankovitch theory from the rerspective of the 405 ka long eccentricity cycle[J]. Earth Science,2022,47(10):3543-3568. (in Chinese with English abstract
    [37] SUN Z. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin,China:Implications for tectonic uplift and block rotation in northern Tibetan Plateau[J]. Earth and Planetary Science Letters,2005,237(3/4):635-646.
    [38] OYVIND H,DAVID A T H,RYAN P D. PAST:Paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica,2001,4(1):1-9.
    [39] FANG X,ZHANG W,MENG Q,et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau,Qinghai Province,China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth Planet. Sci. Lett.,2007,258:293-306. doi: 10.1016/j.jpgl.2007.03.042
    [40] LU H,XIONG S. Magnetostratigraphy of the Dahonggou section,northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilianshan and Altyn Tagh Fault[J]. Earth Planet. Sci. Lett.,2009,288:539-550. doi: 10.1016/j.jpgl.2009.10.016
    [41] JI J,ZHANG K,CLIFT P D,et al. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam Basin:Implications for the growth of the northeastern Tibetan Plateau[J]. Gondwana Res.,2017,46:141-155. doi: 10.1016/j.gr.2017.02.015
    [42] GUO P. Mineralogy and organic geochemistry of the terrestrial lacustrine pre-salt sediments in the Qaidam Basin:Implications for good source rock development[J]. Marine and Petroleum Geology,2019,107:149-162. doi: 10.1016/j.marpetgeo.2019.04.029
    [43] 查宇铭,吴欣松,余达. 松辽盆地松科1井上白垩统烃源岩有机碳含量与沉积速率的关系[J]. 古地理学报,2016,18(5):857-864. doi: 10.7605/gdlxb.2016.05.065

    CHA Y M,WU X S,YU D. Relationship between total organic carbon content and sedimentation rate of the Upper Cretaceous source rocks in Well CCSD-SK-I in Songliao Basin[J]. Journal of Palaeogeography,2016,18(5):857-864. (in Chinese with English abstract doi: 10.7605/gdlxb.2016.05.065
    [44] 李劭杰,何生,朱伟林,等. 基于珠一坳陷旋回地层分析的烃源岩沉积速率研究[J]. 天然气地球科学,2014,25(9);1328-1340.

    LI S J,HE S,ZHU W L,et al. The study on sedimentation rate of source rock based on cyclostratigraphic analysis in the Zhuyi Depression [J]. Natural Gas Geoscience,2014,25(9);1328-1340. (in Chinese with English abstract
    [45] 丁修建,柳广弟,查明. 等. 沉积速率与烃源岩有机质丰度关系:以二连盆地为例[J]. 天然气地球科学,2015,26(6):1076-1085.

    DING X J,LIU G D,CHA M,et al. Relation between sedimentation rate and organic matter abundance of source rocks:A case study of Erlian Basin[J]. Natural Gas Geoscience,2015,26(6):1076-1085. (in Chinese with English abstract
    [46] 袁伟,柳广弟,罗文斌. 鄂尔多斯盆地延长组长7段沉积速率及其对烃源岩有机质丰度的影响[J]. 西安石油大学学报(自然科学版),2016,31(5):20-26.

    YUAN W,LIU G D,LUO W B. Deposition rate of the Seventh Member of Yangchang Formation,Ordos Basin and its impact on organic matter abundance of hydrocarbon source rock[J]. Journal of Xi'an Shiyou University( Natural Science Edition) ,2016,31(5):20-26. (in Chinese with English abstract
    [47] 冯路尧,张建国,姜在兴,等. 松辽盆地青山口组高精度沉积旋回格架及有机质富集响应[J]. 石油学报,2023,44(2):299-311. doi: 10.7623/syxb202302006

    FENG L Y,ZHANG J G,JIANG Z X,et al. High-precision sedimentary cycle framework and organic matter enrichment response of Qingshankou Formation in Songliao Basin[J]. Acta Petrolei Sinica,2023,44(2):299-311. (in Chinese with English abstract doi: 10.7623/syxb202302006
    [48] 张浩东,邹长春,彭诚,等. 基于测井频谱分析的松科二井登娄库组地层沉积速率研究[J]. 地球学报,2022,43(5):654-664. doi: 10.3975/cagsb.2022.061602

    ZHANG H D,ZOU C C,PENG C,et al. A study on the sedimentation rate of the Denglouku Formation from CCSD SK-2,based on logging spectral analysis[J]. Acta Geoscientica Sinica,2022,43(5):654-664. (in Chinese with English abstract doi: 10.3975/cagsb.2022.061602
    [49] 代雅然,陈建书,张嘉玮,等. 碎屑锆石 U-Pb 定年地层划分对比应用探讨:以新元古界梵净山群“淘金河组”为例[J/OL]. 沉积学报. [2024-07-12]. https//doi.org/10.14027/j.issn.1000-0550. 2024. 062.

    DAI Y R,CHEN J S,ZHANG J W,et al. Comparative application of detrital zircon U-Pb dating for stratigraphic delineation:The "Taojinhe Formation" of the Neoproterozoic Fanjingshan Group as an example[J/OL]. Acta Sedimentologica Sinica. [2024-07-12]. https//doi.org/10.14027/j.issn.1000-0550. 2024. 062.(in Chinese with English abstract
    [50] 王必金,包汉勇,刘皓天,等. 川东红星地区吴家坪组富有机质页岩特征与发育控制因素[J]. 地质科技通报,2023,42(5):70-81.

    WANG B J,BAO H Y,LIU H T,et al. Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area,eastern Sichuan Basin[J]. Bulletin of Geological Science and Technology,2023,42(5):70-81. (in Chinese with English abstract
    [51] 周立宏,陈长伟,甘华军,等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报,2022,41(5):19-30.

    ZHOU L H,CHEN C W,GAN H J,et al. Shale formation environment and comprehensive evaluation of shale oil potential of the Lower First Member of Shahejie Formation in Qikou Sag[J]. Bulletin of Geological Science and Technology,2022,41(5):19-30. (in Chinese with English abstract
    [52] 隋立伟,方世虎,孙永河,等. 柴达木盆地西部狮子沟-英东构造带构造演化及控藏特征[J]. 地学前缘,2014,21(1),261-270.

    SUI L W,FANG S H,SUN Y H,et al. The tectonic evolution and accumulation controlling characteristics of Shizigou-Yingdong structural belt of western Qaidam Basin[J]. Earth Science Frontiers,2014,21(1),261-270. (in Chinese with English abstract
    [53] 段磊,张博譞,王伟涛,等. 柴达木盆地路乐河剖面磁性地层年代及其构造变形[J]. 科学通报,2022,67(9):872-887.

    DUAN L,ZHANG B X,WANG W T,et al. Magnetostratigraphy of the Cenozoic Lulehe section in the Qaidam Basin:Implications for the tectonic deformation on the northeastern Tibetan Plateau[J]. Chin. Sci. Bull.,2022,67(9):872-887. (in Chinese with English abstract
    [54] 周爱锋. 晚全新世苏干湖年纹层沉积及其环境记录[D]. 兰州:兰州大学,2007.

    ZHOU A F. Late Holocene sedimentary layers and environmental records of Sugan Lake [D]. Lanzhou:Lanzhou University,2007. (in Chinese with English abstract
    [55] 杨俊,徐清海,母彩霞,等. 鄂尔多斯盆地西南缘侏罗系延安组油页岩发育特征及其古环境恢复[J/OL]. 地质科技通报,[2024-08-20]. https//doi. org/10.19509/j. cnki. dzkq. tb20240171.

    YANG J,XU Q H,MU C X,et al. Characteristics of oil shale development and paleoenvironment restoration of Jurassic Yan'an Formation in southwestern Ordos Basin[J/OL]. Bulletin of Geological Science and Technology. [2024-08-20]. https//doi. org. /10.19509/j. cnki. dzkq. tb20240171. (in Chinese with English abstract
    [56] IBACH L J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J]. Am. Assoc. Pet. Geol.,1980,66(2):170-188.
    [57] 苏宝煌,孙咏. 青藏高原区域抬升对轨道尺度亚洲季风调制效应的模拟研究[J]. 第四纪研究,2023,43(3):940-951.

    SU B H,SUN Y. Regional updraft of the Tibetan Plateau modulates the seasonality of Asian summer precipitation to orbital forcing[J]. Quaternary Science,2023,43(3):940-951. (in Chinese with English abstract
    [58] 刘晓东,石正国. 岁差对亚洲夏季风气候变化影响研究进展[J]. 科学通报,2009,54(20):3097-3107.

    LIU X D,SHI Z G. Research progress on the impact of precession on Asian summer monsoon climate change[J]. Chin. Sci. Bull.,2009,54 (20):3097-3107. (in Chinese with English abstract
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  215
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 录用日期:  2024-05-21
  • 修回日期:  2024-02-19
  • 网络出版日期:  2024-07-25

目录

    /

    返回文章
    返回