留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PIV技术研究不连通孔隙中残余DNAPL的溶解速率影响因素

阮博阳 杨盼瑞 郭会荣 王哲

阮博阳, 杨盼瑞, 郭会荣, 王哲. 基于PIV技术研究不连通孔隙中残余DNAPL的溶解速率影响因素[J]. 地质科技通报, 2023, 42(4): 241-249. doi: 10.19509/j.cnki.dzkq.tb20230515
引用本文: 阮博阳, 杨盼瑞, 郭会荣, 王哲. 基于PIV技术研究不连通孔隙中残余DNAPL的溶解速率影响因素[J]. 地质科技通报, 2023, 42(4): 241-249. doi: 10.19509/j.cnki.dzkq.tb20230515
Ruan Boyang, Yang Panrui, Guo Huirong, Wang Zhe. Factors influencing the dissolution rate of residual DNAPL in unconnected pores based on PIV technology[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 241-249. doi: 10.19509/j.cnki.dzkq.tb20230515
Citation: Ruan Boyang, Yang Panrui, Guo Huirong, Wang Zhe. Factors influencing the dissolution rate of residual DNAPL in unconnected pores based on PIV technology[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 241-249. doi: 10.19509/j.cnki.dzkq.tb20230515

基于PIV技术研究不连通孔隙中残余DNAPL的溶解速率影响因素

doi: 10.19509/j.cnki.dzkq.tb20230515
基金项目: 

国家自然科学基金项目 41672244

国家自然科学基金项目 42177077

详细信息
    作者简介:

    阮博阳(1998—), 男, 现正攻读水文地质学专业硕士学位, 主要从事地下水DNAPL修复研究工作。E-mail: 609986783@qq.com

    通讯作者:

    郭会荣(1971—), 女, 教授, 博士生导师, 主要从事地下介质中多相流体输运反应机理实验与数值模拟研究工作。E-mail: elsieguo@126.com

  • 中图分类号: X141

Factors influencing the dissolution rate of residual DNAPL in unconnected pores based on PIV technology

  • 摘要:

    密度大于水的重非水相液体(dense non-aqueous phase liquids, 简称DNAPL)泄露进入地下环境成为长期的污染源。前人基于土柱、砂箱实验及数值模拟等手段研究了冲洗液流速、助溶剂浓度及介质性质对DNAPL清除效率的影响, 但是孔隙流速如何影响孔隙尺度残余DNAPL的溶解速率还不清楚。在微孔隙模型中注入乙醇冲洗液模拟孔隙中残余PCE的清除过程, 利用微尺度粒子图像测速技术(PIV)获取孔隙通道中的水相流速场分布, 分析不同孔隙结构中的残余PCE溶解清除速率的影响因素。实验结果表明: 影响不连通孔隙残余PCE溶解速率R的因素不仅仅是水相流速, 还有孔隙断面通量q、孔隙开口方向和孔隙通道水相流速方向的夹角α以及通量梯度I等; 基于实验数据拟合得出溶解速率与影响因素之间的定量关系为R=3 876.79q(-0.016α+2.28/I)2; q越大, 不连通孔隙附近的孔隙通道水相更新速率就越快; α越大(α>90°), 有更多的冲洗液进入不连通孔隙内, 从而增加残余PCE溶解速率; I越大, 垂直进入不连通孔隙内部的水相通量的分量衰减越快, 界面附近的流速就会越小, 残余PCE的溶解速率减小。基于微孔隙PIV技术定量揭示了孔隙流速及介质孔隙结构等多因素共同影响孔隙中DNAPL的溶解速率, 为深入理解孔隙中残余DNAPL的溶解机理、定量评估实际场地条件下残余DNAPL清除效率提供新的手段。

     

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of the experimental equipment

    图 2  微孔隙模型结构图

    (灰色为固体颗粒,白色为孔隙通道,蓝色字符表示不连通孔隙的位置)

    Figure 2.  Structure diagram of the micropore model

    图 3  微孔隙模型中捕获有PCE的不连通孔隙附近冲洗液流速分布

    Figure 3.  Velocity distribution of flushing fluid near unconnected pores with PCE captured in the micropore model

    图 4  不连通孔隙周围孔隙断面的选取

    Figure 4.  Selection of pore cross-section around the unconnected pore

    图 5  乙醇溶液冲洗期间微孔隙模型内残余PCE的变化

    (红色为残余PCE,灰色为固体颗粒)

    Figure 5.  Change in residual PCE in the micropore model during the ethanol solution flushing period

    图 6  乙醇溶液冲洗期间不同孔隙处残余PCE的变化

    红色为残余PCE,灰色为固体颗粒,A1至A7表示不连通孔隙中的PCE,B2、B5表示孔隙通道中的PCE

    Figure 6.  Change in residual PCE at different pores during ethanol solution flushing period

    图 7  不连通孔隙中残余PCE面积随时间变化图

    Figure 7.  Residual PCE area at unconnected pores changes with time

    图 8  孔隙开口方向与水相流速方向(a)和孔隙截面的选取(b)

    Figure 8.  Pore opening direction and water phase flow velocity direction(a) and selection of pore cross-section(b)

    图 9  残余PCE溶解速率与孔隙断面通量的关系(a)和残余PCE溶解速率实验值与拟合值的关系(b)

    Figure 9.  Relationship between residual PCE dissolution rate and pore section flux (a), and relationship between experimental and fitting values of residual PCE dissolution rate(b)

    表  1  微孔隙模型参数

    Table  1.   Micropore model parameters

    参数 数值
    长度/mm 20.089
    宽度/mm 15.866
    厚度/mm 0.931
    孔隙度/% 63
    下载: 导出CSV

    表  2  不连通孔隙残余PCE溶解速率的影响因素

    Table  2.   Influencing factors of the dissolution rate of residual PCE in unconnected pores

    点位 孔隙断面通量/(10-7m2·s-1) 角度/(°) 通量梯度/(10-4m·s-1) 溶解速率/(μm2·min-1)
    A1 1.32 130.4 0.58 9 425.9
    A2 1.11 105.4 1.48 4 102.5
    A3 0.92 133 0.94 5 477.1
    A4 1.41 72.7 1.74 2 909.0
    A5 1.26 142.1 2.22 5 728.6
    A6 1.07 90.7 1.43 3 176.2
    A7 0.43 142.1 0.75 2 421.0
    下载: 导出CSV
  • [1] Essaid H I, Bekins B A, Cozzarelli I M. Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding[J]. Water Resources Research, 2015, 51(7): 4861-4902. doi: 10.1002/2015WR017121
    [2] Agaoglu B, Copty N K, Scheytt T, et al. Interphase mass transfer between fluids in subsurface formations: A review[J]. Advances in Water Resources, 2015, 79: 162-194. doi: 10.1016/j.advwatres.2015.02.009
    [3] 甘义群, 于凯, 周爱国, 等. 基于GasBench-IRMS的挥发性氯代烃碳氯同位素指纹特征分析[J]. 地质科技情报, 2013, 32(6): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm

    Gan Y Q, Yu K, Zhou A G, et al. Isotopic fingerprint analysis of carbon and chlorine of volatile chlorinated hydrocarbons based on GasBench-IRMS[J]. Geological Science and Technology Information, 2013, 32(6): 110-115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm
    [4] 宋美钰, 施小清, 康学远, 等. DNAPL场地污染通量升尺度预测的敏感性分析[J]. 地质科技通报, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262

    Song M Y, Shi X Q, Kang X Y, et al. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327-335(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.tb20220262
    [5] 蒲生彦, 唐菁, 侯国庆, 等. 缓释型化学氧化剂在地下水DNAPLs污染修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 791-799. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003023.htm

    Pu S Y, Tang J, Hou G Q, et al. Research progress of application of slow-release chemical oxidant in remediation of DNAPLs pollution in groundwater[J]. Environmental Chemistry, 2020, 39(3): 791-799(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003023.htm
    [6] Hunt J R, Sitar N, Udell K S. Nonaqueous phase liquid transport and cleanup: 1. Analysis of mechanisms[J]. Water Resources Research, 1988, 24(8): 1247-1258. doi: 10.1029/WR024i008p01247
    [7] Karaoglu A G, Copty N K, Akyol N H, et al. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution[J]. Journal of Contaminant Hydrology, 2019, 225: 103515. doi: 10.1016/j.jconhyd.2019.103515
    [8] 周媛, 杨盼瑞, 郭会荣, 等. 注入丁醇调节重非水液相密度的微空隙试验模拟[J]. 地质科技通报, 2022, 41(1): 223-230. doi: 10.19509/j.cnki.dzkq.2022.0016

    Zhou Y, Yang P R, Guo H R, et al. Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid: Pore-scale experimental simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 223-230(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0016
    [9] 付玉丰. 表面活性剂及其复配体系对DNAPL污染含水层的增溶增流修复研究[D]. 长春: 吉林大学, 2020.

    Fu Y F. Study on solubilization and flow-increasing remediation of DNAPL contaminated aquifer by surfactant and its complex system[D]. Changchun: Jilin University, 2020(in Chinese with English abstract).
    [10] Luciano A, Mancini G, Torretta V, et al. An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area[J]. Environmental Science and Pollution Research, 2018, 25(34): 33992-34004. doi: 10.1007/s11356-018-3193-6
    [11] Sarikurt D A, Gokdemir C, Copty N K. Sherwood correlation for dissolution of pooled NAPL in porous media[J]. Journal of Contaminant Hydrology, 2017, 206: 67-74. doi: 10.1016/j.jconhyd.2017.10.001
    [12] Tatti F, Papini M P, Sappa G, et al. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis[J]. Science of the Total Environment, 2018, 622: 164-171.
    [13] Karaoglu A G, Copty N K, Akyol N H, et al. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution[J]. Journal of Contaminant Hydrology, 2019, 225: 103515. doi: 10.1016/j.jconhyd.2019.103515
    [14] Yaksi K, Demiray Z, Copty N K. Impact of cosolvents on the interphase mass transfer of NAPLs in porous media[J]. Water Resources Research, 2021, 57(8): e2020WR029326.
    [15] Alazaiza M Y D, Copty N K, Abunada Z. Experimental investigation of cosolvent flushing of DNAPL in double-porosity soil using light transmission visualization[J]. Journal of Hydrology, 2020, 584: 124659.
    [16] Hu Y, Patmonoaji A, Xu H, et al. Pore-scale investigation on nonaqueous phase liquid dissolution and mass transfer in 2D and 3D porous media[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120901. doi: 10.1016/j.ijheatmasstransfer.2021.120901
    [17] Li M, Zhai Y, Wan L. Measurement of NAPL: Water interfacial areas and mass transfer rates in two-dimensional flow cell[J]. Water Science and Technology, 2016, 74(9): 2145-2151. doi: 10.2166/wst.2016.397
    [18] Santiago J G, Wereley S T, Meinhart C D, et al. A particle image velocimetry system for microfluidics[J]. Experiments in fluids, 1998, 25(4): 316-319.
    [19] Koutsiaris A G, Mathioulakis D S, Tsangaris S. Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries[J]. Measurement Science and Technology, 1999, 10(11): 1037-1046.
    [20] Heshmati M, Piri M. Interfacial boundary conditions and residual trapping: A pore-scale investigation of the effects of wetting phase flow rate and viscosity using micro-particle image velocimetry[J]. Fuel, 2018, 224: 560-578.
    [21] Roman S, Soulaine C, AlSaud M A, et al. Particle velocimetry analysis of immiscible two-phase flow in micromodels[J]. Advances in Water Resources, 2016, 95(S1): 199-211.
    [22] Sen D, Nobes D S, Mitra S K. Optical measurement of pore scale velocity field inside microporous media[J]. Microfluidics and Nanofluidics, 2012, 12(1/4): 189-200.
    [23] Thielicke W, Stamhuis E. PIVlab: Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software, 2014, 2: e30.
    [24] Scarano F, Riethmuller M L. Iterative multigrid approach in PIV image processing with discrete window offset[J]. Experiments in Fluids, 1999, 26(6): 513-523.
    [25] Willert C E, Gharib M. Digital particle image velocimetry[J]. Experiments in Fluids, 1991, 10(4): 181-193.
    [26] Blois G, Barros J M, Christensen K T. A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid-liquid interactions in a porous micromodel[J]. Microfluidics and Nanofluidics, 2015, 18(5/6): 1391-1406.
    [27] Cho J, Annable M D, Rao P S C. Measured mass transfer coefficients in porous media using specific interfacial area[J]. Environmental Science & Technology, 2005, 39(20): 7883-7888.
    [28] Luciano A, Mancini G, Torretta V, et al. An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area[J]. Environmental Science and Pollution Research, 2018, 25(34): 33992-34004.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  365
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 录用日期:  2023-05-11
  • 修回日期:  2023-05-08

目录

    /

    返回文章
    返回