留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶典型区崩塌落石被动防护网失效概率模拟

卢彦丞 李军 梁风 史文兵 王军义

卢彦丞, 李军, 梁风, 史文兵, 王军义. 岩溶典型区崩塌落石被动防护网失效概率模拟[J]. 地质科技通报, 2024, 43(3): 240-250. doi: 10.19509/j.cnki.dzkq.tb20230552
引用本文: 卢彦丞, 李军, 梁风, 史文兵, 王军义. 岩溶典型区崩塌落石被动防护网失效概率模拟[J]. 地质科技通报, 2024, 43(3): 240-250. doi: 10.19509/j.cnki.dzkq.tb20230552
LU Yancheng, LI Jun, LIANG Feng, SHI Wenbing, WANG Junyi. Failure probability simulation of passive protection net for collapses and rockfalls in typical karst area[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 240-250. doi: 10.19509/j.cnki.dzkq.tb20230552
Citation: LU Yancheng, LI Jun, LIANG Feng, SHI Wenbing, WANG Junyi. Failure probability simulation of passive protection net for collapses and rockfalls in typical karst area[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 240-250. doi: 10.19509/j.cnki.dzkq.tb20230552

岩溶典型区崩塌落石被动防护网失效概率模拟

doi: 10.19509/j.cnki.dzkq.tb20230552
基金项目: 

贵州省科技计划项目 黔科合基础-ZK[2022]一般075

贵州省科技计划项目 黔科合基础-ZK[2021]一般228

贵阳市科技计划项目 筑科合同[2023]-13-10号

详细信息
    作者简介:

    卢彦丞, E-mail: 2362626847@qq.com

    通讯作者:

    李军, E-mail: 76133353@qq.com

  • 中图分类号: P642.21

Failure probability simulation of passive protection net for collapses and rockfalls in typical karst area

More Information
  • 摘要:

    贵州省位于我国西南地区, 多山地丘陵, 是典型的喀斯特地形地貌区, 崩塌、滑坡等地质灾害频发。思南县小屯岩崩塌带上现存危岩体方量大, 裂隙、凹岩腔、溶蚀孔洞等发育。为研究岩溶典型区崩塌落石被动防护网失效概率, 通过高精度实景建模技术, 构建崩塌带三维模型, 进行崩塌落石运动过程模拟, 根据现场调查、无人机航拍和数值模拟结果, 选择合适的位置布设落石被动防护网。基于落石粒径大小识别, 选取不同粒径大小的落石, 进行落石被动防护网拦截效果模拟, 计算落石被动防护网失效概率。结果表明: 13种粒径落石突破概率各不相同, (0.25, 2.25] m粒径落石拦截效果良好, 但落石被动防护网拦截率不能达到百分之百; 落石粒径大于2.25 m, 被动防护网出现失效现象, 故将2.25 m粒径的落石为小屯岩崩塌带下被动防护网的设计上限。根据计算, 所有粒径落石经被动防护网拦截后的失效概率低于5%, 属可接受范畴。研究成果为小屯岩崩塌带的落石防护措施提供了有力的参考依据, 对保护岩溶地区山区人民的生命安全和财产安全具有重要意义。

     

  • 图 1  小屯岩崩塌带全貌

    Figure 1.  Overview of the Xiaotunyan collapse zone

    图 2  小屯岩崩塌带工程地质平面图(a)和地质剖面示意图(b)

    Figure 2.  Engineering geological plan(a) and geological profile(b) of the Xiaotunyan collapse zone

    图 3  小屯岩崩塌带坡面划分

    Figure 3.  Slope division of the Xiaotunyan collapse zone

    图 4  崩塌落石堆积分布特征

    Figure 4.  Distribution characteristics of collapse and rockfall accumulation

    图 5  PCAS软件颗粒识别效果

    Figure 5.  Particle identification effect of PCAS software

    图 6  崩塌落石粒径统计概率

    Figure 6.  Statistical probability of rockfall particle size

    图 7  3种粒径落石的运动轨迹图

    a~c分别为0.75, 2.75,5.25 m粒径落石的运动轨迹俯瞰图;d~f分别为0.75, 2.75,5.25 m粒径落石的运动轨迹侧视图

    Figure 7.  Motion track of rockfall with three particle sizes

    图 8  3种粒径落石的运动特征分布图

    a~c分别为0.75, 2.75,5.25 m粒径落石的弹跳高度;d~f分别为0.75, 2.75,5.25 m粒径落石的运动冲击能量

    Figure 8.  Motion characteristic distribution of rockfall with three particle sizes

    图 9  落石被动防护网布置位置

    Figure 9.  Location layout of passive protection net for rockfall

    图 10  小粒径落石的运动过程模拟及拦截效果

    Figure 10.  Movement process and interception effect of small particle size rockfalls

    图 11  中等粒径落石的运动过程及拦截效果

    Figure 11.  Movement process and interception effect of medium particle size rockfalls

    图 12  大粒径落石的运动过程及拦截效果

    Figure 12.  Movement process and interception effect of large particle size rockfalls

    图 13  落石粒径分布概率及突破概率

    Figure 13.  Breakout probability and distribution probability of rockfall with different particle sizes

    表  1  坡面计算参数赋值

    Table  1.   Slope calculation parameter assignment

    坡面变型 法向恢复系数 切向恢复系数 滑动或滚动摩擦系数
    裸岩-灰岩 0.65 0.88 0.35
    碎石堆积区 0.45 0.75 0.70
    覆土区 0.35 0.60 0.55
    道路住房区 0.50 0.80 0.55
    下载: 导出CSV
  • [1] 胡厚田. 崩塌与落石[M]. 北京: 中国铁道出版社, 1989.

    HU H T. Collapse and falling rocks[M]. Beijing: China Railway Publishing House, 1989. (in Chinese)
    [2] CHAU K T, WONG R H C, WU J J. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(1): 69-77. doi: 10.1016/S1365-1609(02)00016-3
    [3] AZZONI A, LA BARBERA G, ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(7): 709-724.
    [4] BOZZOLO D, PAMINI R. Simulation of rock falls down a valley side[J]. Acta Mechanica, 1986, 63(1): 113-130.
    [5] 张路青, 杨志法, 许兵. 滚石与滚石灾害[J]. 工程地质学报, 2004, 12(3): 225-231. doi: 10.3969/j.issn.1004-9665.2004.03.001

    ZHANG L Q, YANG Z F, XU B. Rock falls and rock fall hazards[J]. Journal of Engineering Geology, 2004, 12(3): 225-231. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2004.03.001
    [6] 丁斌, 孟永旭, 裴晓东. 尼泊尔某项目滚石灾害的工程地质调查与评价[J]. 工程地质学报, 2021, 29(2): 554-563. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102025.htm

    DING B, MENG Y X, PEI X D. Engineering geological investigation and assessment on rockfall hazard of one project in Nepal[J]. Journal of Engineering Geology, 2021, 29(2): 554-563. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102025.htm
    [7] WYLLIE D C, MAH C W. Rock slope engineering: Civil and mining[M]. Boca Raton: CRC Press, 2017.
    [8] CHEN T J, ZHANG G C, XIANG X. Research on rockfall impact process based on viscoelastic contact theory[J]. International Journal of Impact Engineering, 2023, 173: 104431. doi: 10.1016/j.ijimpeng.2022.104431
    [9] PALMA B, PARISE M, REICHENBACH P, et al. Rockfall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy[J]. Natural Hazards, 2012, 61(1): 187-201. doi: 10.1007/s11069-011-9899-0
    [10] 何宇航, 裴向军, 梁靖, 等. 基于Rockfall的危岩体危险范围预测及风险评价: 以九寨沟景区悬沟危岩体为例[J]. 中国地质灾害与防治学报, 2020, 31(4): 24-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004003.htm

    HE Y H, PEI X J, LIANG J, et al. Risk assessment and range prediction of dangerous rockmass based on rockfall: A case study of the Xuangou collapse[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 24-33. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004003.htm
    [11] SCHILIRÒ L, ROBIATI C, SMERAGLIA L, et al. An integrated approach for the reconstruction of rockfall scenarios from UAV and satellite-based data in the Sorrento Peninsula (southern Italy)[J]. Engineering Geology, 2022, 308: 106795. doi: 10.1016/j.enggeo.2022.106795
    [12] YAN J H, CHEN J P, TAN C, et al. Rockfall source areas identification at local scale by integrating discontinuity-based threshold slope angle and rockfall trajectory analyses[J]. Engineering Geology, 2023, 313: 106993. doi: 10.1016/j.enggeo.2023.106993
    [13] 王军义, 梁风, 彭雄武, 等. 基于GIS技术的单体崩塌危险范围评价方法研究[J]. 工程地质学报, 2023, 31(1): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202301019.htm

    WANG J Y, LIANG F, PENG X W, et al. Study on assessment method of single collapse risk range based on GIS technology[J]. Journal of Engineering Geology, 2023, 31(1): 188-198. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202301019.htm
    [14] FANOS A M, PRADHAN B. A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS[J]. CATENA, 2019, 172: 435-450. doi: 10.1016/j.catena.2018.09.012
    [15] 王东坡, 何启维, 刘彦辉, 等. 滚石冲击改进型开口帘式网耗能机制研究[J]. 岩土力学, 2021, 42(12): 3356-3365. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112015.htm

    WANG D P, HE Q W, LIU Y H, et al. Research on the energy dissipation mechanism of rockfall impacts on the improved rockfall attenuator barrier[J]. Rock and Soil Mechanics, 2021, 42(12): 3356-3365. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112015.htm
    [16] THOENI K, GIACOMINI A, LAMBERT C, et al. A 3D discrete element modelling approach for rockfall analysis with drapery systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 107-119. doi: 10.1016/j.ijrmms.2014.02.008
    [17] 刘冀昆, 杨晓琳, 王成虎. S-SARⅡ技术的崩塌临灾应急监测原理及其应用[J]. 地质科技通报, 2023, 42(1): 42-51. doi: 10.19509/j.cnki.dzkq.tb20220495

    LIU J K, YANG X L, WANG C H. Principle and application of S-SARⅡ technology for collapse emergency monitoring[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 42-51. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220495
    [18] 庞鑫, 袁明, 卢渊, 等. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法[J]. 地质科技通报, 2023, 42(6): 21-30. doi: 10.19509/j.cnki.dzkq.tb20220427

    PANG X, YUAN M, LU Y, et al. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 21-30. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220427
    [19] 马显东, 周剑, 张路青, 等. 基于崩塌滚石运动特征的防护网动态响应规律[J]. 地球科学, 2022, 47(12): 4559-4573. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202212017.htm

    MA X D, ZHOU J, ZHANG L Q, et al. Dynamic response laws of flexible rockfall barriers based on movement characteristics of rockfall[J]. Earth Science, 2022, 47(12): 4559-4573. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202212017.htm
    [20] SARRO R, RIQUELME A, GARCÍA-DAVALILLO J, et al. Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: Application at a cultural heritage site[J]. Remote Sensing, 2018, 10(12): 1923. doi: 10.3390/rs10121923
    [21] 彭双麒, 柯灵, 郑体, 等. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622

    PENG S Q, KE L, ZHENG T, et al. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0622
    [22] 王颂, 张路青, 周剑, 等. 青藏铁路设兴村段崩塌特征分析与运动学模拟[J]. 工程地质学报, 2020, 28(4): 784-792. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004012.htm

    WANG S, ZHANG L Q, ZHOU J, et al. Characteristic analysis and kinematic simulation of rockfall along Shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology, 2020, 28(4): 784-792. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004012.htm
    [23] SINGH A K, KUNDU J, SARKAR K, et al. Impact of rock block characteristics on rockfall hazard and its implications for rockfall protection strategies along Himalayan highways: A case study[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(7): 5347-5368. doi: 10.1007/s10064-021-02288-1
    [24] WANG D, BI Y, ZHOU L, et al. Experimental study on physical model of waste tennis ball-sand composite shed cushion under rockfall impact[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 193. doi: 10.1007/s10064-022-02643-w
    [25] YAN P, ZHANG J H, KONG X Z, et al. Numerical simulation of rockfall trajectory with consideration of arbitrary shapes of falling rocks and terrain[J]. Computers and Geotechnics, 2020, 122: 103511. doi: 10.1016/j.compgeo.2020.103511
    [26] JIANG N, LI H B, LIU M S, et al. Quantitative hazard assessment of rockfall and optimization strategy for protection systems of the Huashiya cliff, Southwest China[J]. Geomatics, Natural Hazards and Risk, 2020, 11(1): 1939-1965. doi: 10.1080/19475705.2020.1819445
    [27] 阳友奎, 周迎庆, 姜瑞琪, 等. 坡面地质灾害柔性防护的理论与实践[M]. 北京: 科学出版社, 2005.

    YANG Y K, ZHOU Y Q, JIANG R Q, et al. Theory and practice of flexible protection against slope geological hazards[M]. Beijing: Science Press, 2005. (in Chinese)
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  283
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-03
  • 录用日期:  2023-12-12
  • 修回日期:  2023-12-07

目录

    /

    返回文章
    返回