留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

幕阜山复式花岗岩体西北缘伟晶岩中石榴子石成因及对Nb-Ta成矿的制约: 成矿和未成矿微斜长石伟晶岩对比

杨紫文 李艳军 周豹 陈静 冷双梁 陕亮 卢亚鑫

杨紫文,李艳军,周豹,等. 幕阜山复式花岗岩体西北缘伟晶岩中石榴子石成因及对Nb-Ta成矿的制约: 成矿和未成矿微斜长石伟晶岩对比[J]. 地质科技通报,2025,44(2):1-19 doi: 10.19509/j.cnki.dzkq.tb20230563
引用本文: 杨紫文,李艳军,周豹,等. 幕阜山复式花岗岩体西北缘伟晶岩中石榴子石成因及对Nb-Ta成矿的制约: 成矿和未成矿微斜长石伟晶岩对比[J]. 地质科技通报,2025,44(2):1-19 doi: 10.19509/j.cnki.dzkq.tb20230563
YANG Ziwen,LI Yanjun,ZHOU Bao,et al. Genesis of garnet in pegmatite and its implication for Nb-Ta mineralization in the northwestern margin of the Mufushan granite (central Jiangnan Orogen): Comparison from mineralized and unmineralized pegmatites[J]. Bulletin of Geological Science and Technology,2025,44(2):1-19 doi: 10.19509/j.cnki.dzkq.tb20230563
Citation: YANG Ziwen,LI Yanjun,ZHOU Bao,et al. Genesis of garnet in pegmatite and its implication for Nb-Ta mineralization in the northwestern margin of the Mufushan granite (central Jiangnan Orogen): Comparison from mineralized and unmineralized pegmatites[J]. Bulletin of Geological Science and Technology,2025,44(2):1-19 doi: 10.19509/j.cnki.dzkq.tb20230563

幕阜山复式花岗岩体西北缘伟晶岩中石榴子石成因及对Nb-Ta成矿的制约: 成矿和未成矿微斜长石伟晶岩对比

doi: 10.19509/j.cnki.dzkq.tb20230563
基金项目: 中国地质调查局花岗岩成岩成矿地质研究中心开放基金项目(PM202301);湖北省地质局科技项目(KCDZ-2022015;KJ2022-48)
详细信息
    作者简介:

    杨紫文:E-mail:1034307076@qq.com

    通讯作者:

    E-mail:liyj@cug.edu.cn

  • 中图分类号: P618.86; P618.79

Genesis of garnet in pegmatite and its implication for Nb-Ta mineralization in the northwestern margin of the Mufushan granite (central Jiangnan Orogen): Comparison from mineralized and unmineralized pegmatites

More Information
  • 摘要:

    江南造山带中段幕阜山地区已成为我国重要的稀有金属资源基地之一。断峰山地区伟晶岩型铌钽矿床是幕阜山复式花岗岩体西北缘唯一的大型矿床,其成因及物理化学条件不明确。新发现的微斜长石伟晶岩型铌钽矿化脉体中铌钽铁矿、石榴子石和电气石共生,其中石榴子石的成因研究可为该类型Nb-Ta成矿作用研究提供良好的制约。以断峰山地区成矿与未成矿2种微斜长石伟晶岩脉中石榴子石为研究对象,进行了背散射电子(BSE)和阴极发光(CL)微观结构观察、电子探针(EPMA)和激光电感耦合等离子质谱(LA-ICP-MS)原位微区主微量元素分析,探讨石榴子石成因及其对微斜长石伟晶岩成矿作用的指示。断峰山地区伟晶岩中的石榴子石均为岩浆成因,形成于中高温、中低压力环境,属于铁铝榴石−锰铝榴石(Alm48.61-Sps48.21)固溶体系列。成矿微斜长石伟晶岩脉中石榴子石以铁铝榴石为主(Sps42.56-Alm54.63),而未成矿微斜长石伟晶岩脉中石榴子石以锰铝榴石为主(Sps58.93-Alm37.18)。成矿微斜长石伟晶岩中石榴子石多与铌钽铁矿等共生,具有低的Mn、Nb和Ta元素含量,且由核部到边部Mn含量降低Fe含量增加,这可能是由于铌钽矿物的结晶导致,表明石榴子石中Nb、Ta、Fe、Mn等元素的演化关系可以指示幕阜山地区Nb-Ta成矿。

     

  • 图 1  幕阜山地区大地构造 (a)及稀有金属矿床分布图 (b) [18]

    Figure 1.  Geotectonic map (a) and distribution map of rare metal deposits (b) in the Mufushan area

    图 2  断峰山地区伟晶岩型Nb-Ta 矿床地质图[22]

    Zr. 锆;Mz. 白云母

    Figure 2.  Geological map of the pegmatite type Nb-Ta deposit in Duanfengshan area

    图 3  断峰山矿区124#成矿微斜长石伟晶岩脉相带剖面图

    Figure 3.  Geological section of the 124# mineralized microcline pegmatite in the Duanfengshan area

    图 4  断峰山地区成矿微斜长石伟晶岩脉野外照片和镜下照片

    a. 微斜长石伟晶岩与片岩的接触带;b. 锂云母−铌钽铁矿矿石;c. 铌钽铁矿矿石; d. 电气石−铌钽铁矿矿石;e. 电气石−绿柱石;f. 电气石和石榴子石共生;g. 扫面电镜下电气石包裹的铌钽铁矿;h,i. 微斜长石伟晶岩(正交偏光);Ms. 白云母;Qtz. 石英;Mic. 微斜长石;下同

    Figure 4.  Field photos and micrographs of minerized microcline pegmatite veins in the Duanfengshan area

    图 5  断峰山地区未成矿微斜长石伟晶岩野外照片和镜下照片

    a,b. 岩体中未成矿微斜长石伟晶岩脉;c,d. 未成矿微斜长石伟晶岩(正交偏光);Ab. 钠长石

    Figure 5.  Field photos and micrographs of the unmineralized microcline pegmatites in the Duanfengshan area

    图 6  断峰山地区伟晶岩中石榴子石背散射和阴极发光照片

    a,b. 成矿微斜长石伟晶岩中石榴子石(BSE图);c. 未成矿微斜长石伟晶岩中石榴子石(BSE图);d,e. 成矿微斜长石伟晶岩中石榴子石(CL图);f. 未成矿微斜长石伟晶岩中石榴子石(CL图)

    Figure 6.  Backscattered electron (BSE) (a-c) and cathodoluminescence (CL) (d-f) images of garnets from pegmatites in the Duanfengshan area

    图 7  断峰山地区伟晶岩石榴子石三角分类图解(a,据文献[9]修改)和CaO−MgO图解(b)

    Sps. 锰铝榴石;Alm. 铁铝榴石;Adr. 钙铁榴石;Prp. 镁铝榴石;Grs. 钙铝榴石

    Figure 7.  Triangle classification (a) and CaO-MgO (b) diagrams of garnets from pegmatites in the Duanfengshan area

    图 8  断峰山地区伟晶岩中石榴子石Fe-Mn含量变化特征图

    Figure 8.  Diagrams showing the variation of Fe-Mn contents in garnets from pegmatites in the Duanfengshan area

    图 9  断峰山地区石榴子石稀土元素球粒陨石标准化图解(a,b)和原始地幔标准化微量元素蛛网图(c,d)(标准化值据文献[38])

    Figure 9.  Chondrite-normalized REE patterns (a, b) and primitive mantle normalized spidergrams of trace elements (c, d) of garnets in the Duanfengshan area

    图 10  断峰山地区石榴子石微量元素二元图

    Figure 10.  Trace elements binary plots for garnet samples in the Duanfengshan area

    图 11  断峰山地区石榴子石 CaO-MnO成分图解(a. 底图据文献[48]修改)和Mn-Mg-Fe三元图(b. 底图据文献[6])

    Figure 11.  CaO-MnO diagram (a) and Mn-Mg-Fe ternary plot (b) of garnets in the Duanfengshan area

    图 12  断峰山地区石榴子石w(MnO)−w(FeO)(a) 和Mg−Mn/(Mn+Fe)演化图解(b. 底图据文献[56])

    Figure 12.  MnO content−FeO content (a) and Mg−Mn/(Mn+Fe) diagrams (b) of garnets in the Duangfengshan area

    表  1  断峰山地区成矿与未成矿微斜长石伟晶岩差异对比

    Table  1.   Comparison of differences between mineralized and unmineralized microcline pegmatites in the Duanfengshan area

      成矿微斜长石伟晶岩 未成矿微斜长石伟晶岩
    围岩类型 新元古界冷家溪群片岩 黑云母二长花岗岩
    与花岗岩的关系 岩体外的片岩内 岩体内部
    展布方向 NE 向 NW向
    规模及分带 数量较多,长度几百米至上千米,宽度几米至百余米,分带明显 数量较少,长度几米到几十米,宽度小于3 m,
    分带不明显
    矿物组合 石英、斜长石、钾长石和白云母,副矿物石榴子石和电气石,
    内带发育铌钽铁矿、锂云母、绿柱石
    石英、斜长石、钾长石和白云母,副矿物
    石榴子石和电气石
    次级断裂构造 以NE向断裂为主,次为近NS向和近EW向断裂 以NW向断裂为主
    下载: 导出CSV

    表  2  断峰山地区伟晶岩中石榴子石电子探针分析主量元素成分

    Table  2.   EPMA major element compositions of garnets from pegmatites in the Duanfengshan area

    样品号 成矿伟晶岩 未成矿伟晶岩
    124-1 124-2 165-1 165-2 Lj-1 Lj-2
    1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 4 5
    SiO2 wB/% 34.13 35.90 35.43 35.79 35.69 35.95 35.89 35.53 35.93 35.22 35.71 35.29 35.85 35.60 35.79 35.71 35.87 35.73 35.81 35.87 35.51 35.44 35.50 35.43 35.52 35.43 35.40 35.58 35.44
    TiO2 0.04 0.02 0.01 bdl 0.09 0.11 0.03 0.07 bdl 0.06 0.07 0.08 0.03 0.07 0.04 0.06 0.01 0.03 0.00 0.04 0.05 0.06 0.01 0.05 0.03 0.08 0.10 0.05 0.05
    Al2O3 19.83 19.99 19.90 19.62 19.54 19.87 19.58 19.75 20.12 20.55 19.45 20.33 20.68 20.52 20.58 20.76 20.71 20.88 20.74 20.43 19.93 19.93 20.35 20.03 20.01 19.82 19.76 20.06 20.04
    FeO 26.88 27.13 26.32 27.55 25.26 25.25 24.75 24.47 22.99 25.35 24.55 23.14 30.07 25.91 24.63 23.86 24.32 25.64 28.48 19.89 20.09 17.55 20.01 19.22 17.49 17.43 17.17 17.23 17.62
    MnO 17.34 17.56 17.65 16.96 18.94 18.80 19.00 18.92 18.77 18.36 18.85 18.82 12.07 16.55 17.81 18.49 17.95 16.79 13.82 22.71 22.20 25.22 22.35 23.30 25.13 25.27 25.50 25.49 25.14
    MgO 0.17 0.21 0.17 0.28 0.33 0.33 0.33 0.28 0.35 0.32 0.29 0.31 0.56 0.37 0.23 0.26 0.24 0.30 0.45 0.69 0.74 0.65 0.78 0.57 0.57 0.56 0.56 0.61 0.51
    CaO 0.51 0.49 0.49 0.52 0.64 0.65 0.61 0.61 0.66 0.63 0.69 0.64 0.31 0.53 0.45 0.48 0.44 0.46 0.42 0.41 0.39 0.52 0.39 0.39 0.48 0.59 0.46 0.45 0.48
    Na2O 0.01 bdl 0.02 0.01 bdl bdl 0.02 bdl bdl bdl bdl 0.08 0.01 0.03 0.00 0.02 0.02 0.01 bdl bdl bdl 0.00 0.03 bdl 0.01 0.01 0.03 0.01 0.01
    K2O 0.02 bdl 0.01 bdl bdl 0.01 bdl 0.01 bdl 0.01 0.01 0.02 bdl bdl 0.00 bdl bdl bdl bdl bdl bdl 0.00 bdl 0.00 bdl bdl bdl 0.01 0.00
    总计 98.92 101.29 100.00 100.73 100.48 100.95 100.20 99.65 98.82 100.50 99.62 98.70 99.58 99.58 99.53 99.64 99.54 99.84 99.72 100.03 98.93 99.38 99.42 98.99 99.23 99.17 98.98 99.49 99.29
    Si

    2.86 2.93 2.93 2.94 2.94 2.94 2.96 2.95 2.99 2.89 2.97 2.94 2.96 2.95 2.96 2.95 2.97 2.95 2.96 2.95 2.95 2.94 2.93 2.95 2.95 2.94 2.95 2.94 2.94
    Ti 0.00 0.00 0.00 bdl 0.01 0.01 0.00 0.00 bdl 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
    Al 1.82 1.86 1.87 1.84 1.84 1.86 1.87 1.88 1.97 1.88 1.87 1.94 1.98 1.95 1.97 1.97 1.99 1.98 1.97 1.93 1.91 1.88 1.92 1.91 1.90 1.88 1.89 1.90 1.90
    Fe 1.88 1.85 1.82 1.89 1.74 1.73 1.71 1.70 1.60 1.74 1.70 1.61 2.08 1.79 1.71 1.65 1.68 1.77 1.97 1.37 1.40 1.22 1.38 1.34 1.21 1.21 1.20 1.19 1.22
    Mn 1.23 1.22 1.24 1.18 1.32 1.30 1.33 1.33 1.33 1.28 1.33 1.33 0.84 1.16 1.25 1.29 1.26 1.17 0.97 1.58 1.56 1.77 1.56 1.64 1.77 1.78 1.80 1.79 1.77
    Mg 0.02 0.03 0.02 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.07 0.05 0.03 0.03 0.03 0.04 0.06 0.08 0.09 0.08 0.10 0.07 0.07 0.07 0.07 0.08 0.06
    Ca 0.05 0.04 0.04 0.05 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.03 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.05 0.03 0.03 0.04 0.05 0.04 0.04 0.04
    Na 0.00 bdl 0.00 0.00 bdl bdl 0.00 bdl bdl 0.00 bdl 0.01 0.00 0.00 0.00 0.00 0.00 0.00 bdl bdl bdl 0.00 0.01 bdl 0.00 0.00 0.00 0.00 0.00
    Sps wB/% 44.49 42.94 43.35 42.00 47.16 45.92 46.61 46.38 44.25 44.43 46.38 45.62 28.54 39.51 42.16 43.97 42.46 39.83 32.70 54.06 54.09 61.77 53.80 56.64 60.97 61.98 62.89 61.90 61.19
    Prp 0.78 0.89 0.73 1.22 1.42 1.42 1.43 1.21 1.46 1.37 1.24 1.34 2.34 1.55 0.97 1.10 0.98 1.25 1.88 2.88 3.17 2.80 3.29 2.42 2.44 2.40 2.43 2.62 2.18
    Alm 53.23 54.70 54.42 55.16 49.69 51.01 50.18 50.75 52.32 52.45 50.47 51.34 68.27 57.56 55.64 53.69 55.26 57.62 64.17 41.96 41.70 34.02 41.76 39.92 35.21 34.08 33.59 34.27 35.32
    Grs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00 1.65 0.85 0.86 1.14 1.24 1.30 1.30 1.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Adr 1.50 1.46 1.50 1.62 1.72 1.65 1.78 1.65 1.30 1.75 1.91 0.05 0.00 0.52 0.08 0.00 0.00 0.00 0.00 1.10 1.04 1.41 1.16 1.01 1.38 1.54 1.09 1.21 1.31
    注:FeO为全铁含量;Sps. 锰铝榴石;Prp. 镁铝榴石;Alm. 铁铝榴石;Grs. 钙铝榴石;Adr. 钙铁榴石;bdl. 低于检测限;晶体化学式基于12个氧原子计算
    下载: 导出CSV

    表  3  断峰山地区伟晶岩中石榴子石 LA-ICP-MS原位微区分析微量元素成分

    Table  3.   LA-ICP-MS trace element compositions of garnets from pegmatites in the Duanfengshan area

    样品号 成矿伟晶岩 未成矿伟晶岩
    124-1 124-2 165-1 165-2 Lj-1 Lj-2
    1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 4 5
    wB/10−6 Li 147.61 156.83 183.94 150.58 116.74 154.17 129.47 134.93 147.38 63.00 147.09 121.48 125.35 106.89 116.55 151.46 121.12 98.78 106.02 111.07 119.17 113.64 119.74 132.20 125.73 84.14 105.03 84.82 67.85 118.60
    Be 0.00 0.20 0.18 0.13 0.10 0.19 0.05 0.00 0.06 0.00 0.00 0.31 0.31 0.32 0.00 0.00 0.32 0.06 0.00 0.25 0.51 0.05 0.05 0.26 0.13 0.11 0.11 0.00 0.24 0.00
    B 1.81 0.03 1.88 0.27 0.47 4.36 0.00 1.67 0.00 1.44 1.76 1.21 0.00 0.14 2.36 0.00 0.35 1.06 0.74 1.37 2.15 1.38 1.46 1.37 0.12 0.96 2.92 0.94 0.00 0.51
    Sc 4.22 6.83 11.64 5.98 20.17 20.60 16.57 15.56 14.77 4.91 14.79 13.24 14.29 7.31 5.65 7.73 11.94 9.27 8.61 7.92 4.48 5.37 5.25 4.82 2.53 6.83 4.75 2.60 2.46 2.64
    V 0.03 0.00 0.12 0.04 0.04 0.11 0.13 0.00 0.07 0.06 0.09 0.06 0.09 0.00 0.10 0.01 0.04 1.41 0.86 1.19 0.14 0.07 0.12 0.79 0.06 0.15 0.09 1.48 0.74 0.99
    Cr 2.64 0.81 2.06 0.99 0.00 0.00 0.58 0.00 0.00 0.70 2.23 0.19 1.52 0.00 0.00 0.97 0.06 0.97 0.00 0.88 0.00 0.00 0.20 0.46 0.05 0.00 0.00 0.88 0.00 0.21
    Co 1.40 1.21 1.13 1.34 0.79 0.79 0.95 0.82 0.61 0.72 0.75 0.92 0.68 1.80 1.22 1.20 1.18 2.56 2.89 2.87 4.33 2.95 3.04 5.43 3.77 2.63 2.70 2.33 2.56 2.88
    Ni 0.54 0.16 0.00 0.43 0.56 0.37 1.09 0.00 0.26 0.00 0.07 0.00 0.27 0.40 0.14 0.25 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.01 0.00 0.49 1.39 0.00 0.46 0.00
    Cu 0.00 0.00 0.00 0.28 0.15 0.00 0.01 0.11 0.00 0.01 0.13 0.02 0.00 0.01 0.07 0.00 0.43 0.06 0.00 0.13 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.14 0.10 0.00
    Zn 437.56 401.21 384.54 406.53 263.86 255.93 261.13 274.92 264.24 309.67 244.60 248.47 244.55 360.71 344.45 352.01 295.83 307.59 325.67 314.77 357.05 240.91 232.26 388.94 305.97 247.05 229.43 271.39 270.72 277.60
    Ga 23.13 22.94 25.43 23.65 28.24 27.45 26.52 25.80 27.53 21.65 25.14 24.28 23.68 21.45 24.29 31.90 25.97 19.51 20.08 21.04 26.22 27.21 27.52 23.69 25.05 27.75 26.93 29.03 28.51 26.39
    Rb 0.06 0.24 0.23 0.12 0.00 0.55 0.09 0.00 0.09 0.00 0.09 0.10 0.19 0.00 0.15 0.01 0.11 0.03 0.13 0.01 0.17 0.03 0.23 0.02 0.04 0.13 0.03 0.12 0.08 0.09
    Sr 0.03 0.01 0.09 0.04 0.04 0.04 0.02 0.03 0.04 0.01 0.04 0.06 0.08 0.00 0.04 0.01 0.19 0.04 0.03 0.06 0.07 0.07 0.07 0.02 0.00 0.13 0.08 0.04 0.03 0.02
    Y 412.70 491.11 719.37 399.24 613.71 551.78 514.67 457.63 549.46 41.67 532.36 527.06 549.03 321.23 379.42 454.46 208.79 254.55 568.45 742.88 712.33 775.60 849.18 585.37 462.66 831.41 679.86 606.30 497.87 517.41
    Zr 12.82 13.11 13.36 12.34 17.74 19.41 17.95 18.90 19.33 8.91 19.34 17.76 17.85 8.96 8.80 8.67 10.93 6.93 7.17 7.52 21.13 18.18 18.33 9.55 14.29 20.84 20.26 23.40 21.48 17.26
    Nb 0.30 0.38 0.74 0.31 1.00 1.00 0.96 0.84 0.98 0.26 1.07 0.71 0.68 0.12 0.69 1.97 0.63 0.02 0.02 0.05 5.14 2.88 3.81 1.52 0.70 2.32 4.86 5.70 3.77 0.93
    Ag 0.02 0.00 0.01 0.01 0.05 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.07 0.05 0.06 0.00 0.00 0.01 0.05 0.01 0.04 0.00 0.03 0.03 0.00 0.00
    Cd 11.24 10.41 12.40 10.70 7.62 10.55 9.05 8.47 6.06 6.94 6.79 6.91 6.97 8.31 7.89 10.14 6.55 7.93 10.09 7.23 6.90 6.14 5.43 8.10 6.81 7.97 6.19 8.64 9.66 10.15
    Sn 6.61 6.79 7.38 5.64 6.29 6.22 6.98 6.57 7.03 1.68 7.69 7.12 6.67 3.89 4.31 6.49 6.35 1.63 1.18 0.91 11.41 12.10 11.42 6.11 7.88 12.94 12.87 9.85 9.67 9.44
    Cs 0.04 0.01 0.02 0.03 0.03 1.36 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.06 0.03 0.01 0.00 0.00 0.00 0.00 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.05
    Ba 0.08 0.00 0.02 0.04 0.04 0.00 0.02 0.00 0.04 0.00 0.04 0.00 0.01 0.06 0.00 0.04 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.04 0.00 0.00 0.00 0.04
    La 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Ce 0.00 0.00 0.02 0.00 0.02 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01
    Pr 0.01 0.00 0.01 0.00 0.01 0.02 0.02 0.01 0.01 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.02
    Nd 0.11 0.11 0.01 0.09 0.31 0.15 0.26 0.22 0.40 0.12 0.22 0.35 0.30 0.07 0.02 0.03 0.20 0.00 0.05 0.05 0.17 0.19 0.20 0.02 0.15 0.23 0.24 0.24 0.21 0.15
    wB/10−6 Sm 0.89 1.07 1.69 0.81 2.17 2.32 2.35 2.15 2.29 1.26 2.39 1.91 2.08 1.35 0.94 0.77 0.99 0.71 1.08 1.35 1.76 1.39 1.57 0.63 1.41 1.24 1.71 1.85 1.37 1.27
    Eu 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.01 0.00 0.03 0.02 0.03 0.03 0.02 0.05 0.03 0.02 0.01 0.09 0.10 0.11 0.07 0.06 0.12 0.13 0.04 0.05 0.04
    Gd 6.23 8.69 9.68 6.43 11.79 11.03 12.04 10.69 11.51 4.47 12.01 11.84 10.99 10.21 8.68 5.71 6.05 5.42 9.33 15.51 11.05 9.82 10.47 6.28 7.45 7.52 9.94 10.50 8.03 8.56
    Tb 3.96 5.05 5.98 3.86 6.60 6.29 6.30 5.82 6.19 1.22 6.08 6.19 5.88 5.45 4.90 4.21 3.13 3.57 5.85 9.02 6.92 6.65 7.23 4.50 4.92 5.44 6.27 6.42 5.14 5.15
    Dy 46.64 55.92 73.70 44.38 72.36 66.12 65.10 57.73 63.80 5.57 62.86 60.25 63.57 47.17 49.21 49.00 27.50 34.05 68.48 96.68 81.93 84.28 93.57 59.15 54.19 79.66 75.11 70.20 57.45 55.21
    Ho 9.90 12.19 19.92 9.42 17.02 15.36 13.32 11.80 14.55 0.74 13.88 13.54 14.05 8.09 9.90 11.68 4.73 5.79 15.74 20.96 19.10 20.61 22.96 16.44 11.17 23.68 17.84 14.38 11.92 12.72
    Er 33.20 39.76 79.42 30.52 61.37 51.80 47.58 40.31 50.85 2.57 46.29 44.72 49.46 19.37 28.69 43.56 13.91 15.51 48.30 66.16 66.28 76.52 85.58 63.21 34.77 113.59 69.14 46.86 39.66 43.41
    Tm 6.76 7.74 19.50 6.22 13.84 10.98 10.32 8.58 11.15 0.62 9.87 9.99 11.15 3.44 5.53 10.22 2.68 2.40 9.53 12.84 14.53 17.87 20.85 13.09 6.45 34.21 17.01 9.78 8.22 8.81
    Yb 57.11 63.16 187.59 52.81 122.96 99.92 96.19 81.37 98.13 5.56 89.30 89.26 103.69 24.38 46.96 92.96 22.01 17.89 72.94 100.04 128.98 169.54 196.62 106.20 49.22 381.86 171.94 84.68 71.18 79.36
    Lu 6.37 7.10 25.15 5.63 15.52 12.40 12.36 10.10 12.38 0.67 11.22 11.49 13.68 2.40 5.21 11.81 2.41 1.77 8.34 11.82 16.01 22.40 25.85 14.69 5.32 57.98 22.96 10.11 8.90 9.59
    Hf 0.32 0.37 0.53 0.46 0.58 0.62 0.66 0.49 0.70 0.24 0.64 0.68 0.63 0.31 0.36 0.34 0.47 0.23 0.13 0.25 1.05 0.90 1.00 0.53 0.48 0.80 1.18 1.16 1.00 0.70
    Ta 0.46 0.34 0.89 0.37 1.13 1.07 1.01 0.90 1.15 0.40 0.90 0.69 0.79 0.15 0.39 1.66 1.44 0.07 0.06 0.05 3.24 2.30 2.90 1.92 1.17 3.03 2.83 4.54 3.58 1.68
    Bi 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.02 0.00 0.02 0.02 0.03 0.01 0.01 0.00 0.14 0.00 0.00 0.00 0.05 0.04 0.01 0.09 0.08 0.03 0.05 0.05 0.06 0.07
    Pb 0.04 0.00 0.00 0.03 0.02 0.09 0.00 0.00 0.02 0.02 0.01 0.00 0.02 0.00 0.03 0.00 0.36 0.03 0.02 0.00 0.04 0.04 0.01 0.03 0.02 0.04 0.03 0.11 0.00 0.16
    Th 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.03 0.02 0.00 0.01
    U 0.12 0.12 0.19 0.14 0.36 0.33 0.37 0.35 0.35 0.12 0.33 0.28 0.28 0.08 0.63 0.18 2.49 0.03 0.03 0.03 1.79 0.62 1.10 0.28 0.27 0.88 1.61 1.44 0.71 0.38
    ∑REE 171.18 200.81 422.67 160.19 323.99 276.40 265.86 228.80 271.28 22.82 254.14 249.60 274.89 121.97 160.07 229.99 83.70 87.15 239.67 334.44 346.86 409.38 465.04 284.30 175.12 705.55 392.32 255.07 212.18 224.32
    ∑LREE 1.02 1.20 1.74 0.92 2.52 2.50 2.65 2.40 2.71 1.41 2.65 2.30 2.41 1.46 0.99 0.83 1.27 0.75 1.17 1.42 2.07 1.70 1.90 0.74 1.63 1.62 2.10 2.14 1.67 1.50
    ∑HREE 170.16 199.60 420.93 159.27 321.46 273.90 263.21 226.40 268.57 21.41 251.50 247.29 272.48 120.50 159.08 229.16 82.43 86.40 238.50 333.02 344.80 407.68 463.14 283.56 173.49 703.93 390.22 252.93 210.51 222.82
    (La/Yb)N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    (La/Sm)N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    (Gd/Yb)N 0.09 0.11 0.04 0.10 0.08 0.09 0.10 0.11 0.10 0.66 0.11 0.11 0.09 0.35 0.15 0.05 0.23 0.25 0.11 0.13 0.07 0.05 0.04 0.05 0.13 0.02 0.05 0.10 0.09 0.09
    Eu/Eu* 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.02 0.02 0.05 0.04 0.02 0.01 0.05 0.06 0.06 0.07 0.05 0.09 0.08 0.02 0.04 0.03
    Y/Gd 66.27 56.54 74.35 62.10 52.05 50.01 42.73 42.82 47.75 9.33 44.33 44.51 49.94 31.46 43.72 79.56 34.50 46.93 60.93 47.91 64.48 78.96 81.08 93.27 62.14 110.62 68.37 57.76 61.96 60.45
    Y/Dy 8.85 8.78 9.76 9.00 8.48 8.35 7.91 7.93 8.61 7.48 8.47 8.75 8.64 6.81 7.71 9.27 7.59 7.48 8.30 7.68 8.69 9.20 9.08 9.90 8.54 10.44 9.05 8.64 8.67 9.37
    下载: 导出CSV
  • [1] 吕正航,张辉,赵景宇. 新疆柯鲁木特伟晶岩脉中石榴子石组成对岩浆−热液过程及Li矿化的制约[J]. 矿物学报,2017,37(3):247-257.

    LÜ Z H,ZHANG H,ZHAO J Y. Magmatic-hydrothermal evolution and Li mineralization in pegmatite:Constraints from composition of garnet from kelumute No. 112 pegmatite,Xinjiang Autonomous Region,China[J]. Acta Mineralogica Sinica,2017,37(3):247-257. (in Chinese with English abstract
    [2] KLECK W D,FOORD E E. The chemistry,mineralogy,and petrology of the George Ashley Block pegmatite body[J]. American Mineralogist,1999,84(5/6):695-707.
    [3] 梁祥济. 钙铝−钙铁系列石榴子石的特征及其交代机理[J]. 岩石矿物学杂志,1994,13(4):342-352.

    LIANG X J. Garnets of grossular-andradite series:Their characteristics and metasomatic mechanism[J]. Acta Petrologica et Mineralogica,1994,13(4):342-352. (in Chinese)
    [4] 冉子龙,李艳军. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报,2021,40(2):13-23.

    RAN Z L,LI Y J. Research advances on rare metal pegmatite deposits[J]. Bulletin of Geological Science and Technology,2021,40(2):13-23. (in Chinese with English abstract
    [5] ALLAN B D,CLATKE D B. Ocurrence and origin of garmets in the South Mountain Batholith,Nova Scotia[J]. The Canadian Mineralogist,1981,19(1):19-24.
    [6] MILLER C F,STODDARD E F. The role of manganese in the paragenesis of magmatic garnet:An example from the old woman-piute range,California[J]. The Journal of Geology,1981,89(2):233-246. doi: 10.1086/628582
    [7] WHITWORTH M P. Petrogenetic implications of garnets associated with lithium pegmatites from SE Ireland[J]. Mineralogical Magazine,1992,56:75-83. doi: 10.1180/minmag.1992.056.382.10
    [8] SAMADI R,MILLER N R,MIRNEJAD H,et al. Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran:A major,trace element,and oxygen isotope approach[J]. Lithos,2014,208:378-392.
    [9] HERNÁNDEZ-FILIBERTO L,RODA-ROBLES E,SIMMONS W B,et al. Garnet as indicator of pegmatite evolution:The case study of pegmatites from the Oxford pegmatite field (Maine,USA)[J]. Minerals,2021,11(8):802. doi: 10.3390/min11080802
    [10] RAHMANI JAVANMARD S,TAHMASBI Z,DING X,et al. Geochemistry of garnet in pegmatites from the Boroujerd intrusive complex,Sanandaj-Sirjan Zone,western Iran:Implications for the origin of pegmatite melts[J]. Mineralogy and Petrology,2018,112(6):837-856. doi: 10.1007/s00710-018-0591-x
    [11] 陈欢,冯梦,康志强,等. 桂东北茅安塘伟晶岩中石榴子石的特征及对岩浆演化的指示意义[J]. 地球科学,2020,45(6):2059-2076.

    CHEN H,FENG M,KANG Z Q,et al. Characteristics of garnets in pegmatites of Mao'antang,northeast Guangxi,and their implications for magmatic evolution[J]. Earth Science,2020,45(6):2059-2076. (in Chinese with English abstract
    [12] 周振华,车合伟,马星华,等. 初论稀有金属矿床研究的一些重要进展[J]. 地质与勘探,2016,52(4):614-626.

    ZHOU Z H,CHE H W,MA X H,et al. A preliminary discussion on some important advances of the rare metal deposit[J]. Geology and Exploration,2016,52(4):614-626. (in Chinese with English abstract
    [13] 季浩,李艳军,李一鸣,等. 碱性花岗岩型稀有稀土矿床类型及成矿作用研究进展[J]. 地质科技通报,2024,43(1):23-38.

    JI H,LI Y J,LI Y M,et al. Research advances on mineralization and types of the alkaline granite-related rare metal and rare earth element deposits[J]. Bulletin of Geological Science and Technology,2024,43(1):23-38. (in Chinese with English abstract
    [14] 刘翔,周芳春,黄志飚,等. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J]. 大地构造与成矿学,2018,42(2):235-243.

    LIU X,ZHOU F C,HUANG Z B,et al. Discovery of Renli superlarge pegmatite-type Nb-Ta polymetallic deposit in Pingjiang,Hunan Province and its significances[J]. Geotectonica et Metallogenia,2018,42(2):235-243. (in Chinese with English abstract
    [15] 李鹏,张立平,李建康,等. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用[J]. 矿床地质,2021,40(4):819-841.

    LI P,ZHANG L P,LI J K,et al. Metallogenic regularity of rare metal deposits in Mufushan area of Central China,and its application in ore prospecting[J]. Mineral Deposits,2021,40(4):819-841. (in Chinese with English abstract
    [16] 李鹏,周芳春,李建康,等. 湘东北仁里−传梓源铌钽矿床隐伏花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 大地构造与成矿学,2020,44(3):486-500.

    LI P,ZHOU F C,LI J K,et al. Zircon U-Pb ages and Hf isotopic compositions of the concealed granite of Renli-Chuanziyuan deposit,NE Hunan and geological significance[J]. Geotectonica et Metallogenia,2020,44(3):486-500. (in Chinese with English abstract
    [17] LI P,LI J K,LIU X,et al. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan Orogenic Belt:A case study of the giant Renli Nb-Ta deposit in Hunan,China[J]. Ore Geology Reviews,2020,116:103237. doi: 10.1016/j.oregeorev.2019.103237
    [18] 文春华,罗小亚,陈剑锋,等. 湘东北幕阜山地区燕山期岩浆演化与稀有金属成矿的关系[J]. 中国地质调查,2019,6(6):19-28.

    WEN C H,LUO X Y,CHEN J F,et al. Relationship between Yanshanian magmatic activity and rare metal mineralization in Mufushan area of northeast Hunan[J]. Geological Survey of China,2019,6(6):19-28. (in Chinese with English abstract
    [19] 王臻,陈振宇,李建康,等. 云母矿物对仁里稀有金属伟晶岩矿床岩浆−热液演化过程的指示[J]. 矿床地质,2019,38(5):1039-1052.

    WANG Z,CHEN Z Y,LI J K,et al. Indication of mica minerals for magmatic-hydrothermal evolution of Renli rare metal pegmatite deposit[J]. Mineral Deposits,2019,38(5):1039-1052. (in Chinese with English abstract
    [20] 杨晗,陈振宇,李建康,等. 湘东北仁里−传梓源5号伟晶岩脉云母和长石成分的演化与成矿作用的关系[J]. 矿床地质,2019,38(4):851-866.

    YANG H,CHEN Z Y,LI J K,et al. Relationship between the mineralization and the evolution of mica and feldspar components of Renli-Chuanziyuan No. 5 pegmatite,northeast Hunan[J]. Mineral Deposits,2019,38(4):851-866. (in Chinese with English abstract
    [21] 李鹏,刘翔,李建康,等. 湘东北仁里−传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报,2019,93(6):1374-1391.

    LI P,LIU X,LI J K,et al. Petrographic and geochemical characteristics of Renli-Chuanziyuan No. 5 pegmatite,NE Hunan,and its metallogenic age[J]. Acta Geologica Sinica,2019,93(6):1374-1391. (in Chinese with English abstract
    [22] 湖北省第四地质大队. 湖北通城断峰山含铌钽花岗伟晶岩矿区地质勘探报告[R]. 咸宁:湖北省第四地质大队,1974.

    The 4th Geological Team of Hubei Geological Bureau. Geological exploration report of Duanfengshan niobium-tantalum granite pegmatite mining area in Tongcheng,Hubei[R]. Xianning:The 4th Geological Team of Hubei Geological Bureau,1974. (in chinese
    [23] 张文胜,尹近,黄艳华,等. 湖北省通城县断峰山含铌钽伟晶岩空间分布规律[J]. 现代矿业,2019,35(11):44-48.

    ZHANG W S,YIN J,HUANG Y H,et al. Spatial distribution law of the niobium tantalum pegmatite in Duanfengshan,Tongcheng County,Hubei Province[J]. Modern Mining,2019,35(11):44-48. (in Chinese with English abstract
    [24] 李乐广,王连训,田洋,等. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义[J]. 地球科学,2019,44(7):2532-2560.

    LI L G,WANG L X,TIAN Y,et al. Petrogenesis and rare-metal mineralization of the Mufushan granitic pegmatite,South China:Insights from in situ mineral analysis[J]. Earth Science,2019,44(7):2532-2560. (in Chinese with English abstract
    [25] 张丽雅,张成乘,赵帆,等. 湖北省断峰山铌钽矿床地质特征及成因[J]. 现代矿业,2019,35(6):45-50. doi: 10.3969/j.issn.1674-6082.2019.06.012

    ZHANG L Y,ZHANG C C,ZHAO F,et al. Geological characteristics and genesis of Duanfengshan niobium-tantalum deposit in Hubei Province[J]. Modern Mining,2019,35(6):45-50. (in Chinese with English abstract doi: 10.3969/j.issn.1674-6082.2019.06.012
    [26] 李鹏,李建康,裴荣富,等. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学依据[J]. 地球科学,2017,42(10):1684-1696.

    LI P,LI J K,PEI R F,et al. Multistage magmatic evolution and Cretaceous peak metallogenic epochs of Mufushan composite granite mass:Constrains from geochronological evidence[J]. Earth Science,2017,42(10):1684-1696. (in Chinese with English abstract
    [27] 祝明明,邹建林,王闯,等. 幕阜山地区断峰山铌钽矿的矿物学、年代学和赋存状态[J]. 地质科技通报,2021,40(6):55-69.

    ZHU M M,ZOU J L,WANG C,et al. Mineralogy,geochronology and occurrence state of the Duanfengshan Nb-Ta deposit in Mufushan area[J]. Bulletin of Geological Science and Technology,2021,40(6):55-69. (in Chinese with English abstract
    [28] 李艳军,魏俊浩,张文胜,等. 幕阜山复式岩体西北缘新发现微斜长石伟晶岩型铌钽矿化[J]. 地质科技通报,2021,40(2):208-210.

    LI Y J,WEI J H,ZHANG W S,et al. Newly discovered microplagioclase pegmatite-type Nb-Ta mineralization in the northwestern margin of the Mufushan granitic complex[J]. Bulletin of Geological Science and Technology,2021,40(2):208-210. (in Chinese with English abstract
    [29] 刘翔,周芳春,李鹏,等. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义[J]. 矿床地质,2019,38(4):771-791.

    LIU X,ZHOU F C,LI P,et al. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance[J]. Mineral Deposits,2019,38(4):771-791. (in Chinese with English abstract
    [30] 周芳春,李建康,刘翔,等. 湖南仁里铌钽矿床矿体地球化学特征及其成因意义[J]. 地质学报,2019,93(6):1392-1404. doi: 10.3969/j.issn.0001-5717.2019.06.017

    ZHOU F C,LI J K,LIU X,et al. Geochemical characteristics and genetic significance of ore bodies in Renli Nb-Ta deposit,Hunan Province[J]. Acta Geologica Sinica,2019,93(6):1392-1404. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2019.06.017
    [31] 陕亮,柯贤忠,庞迎春,等. 湘东北栗山地区新元古代岩浆活动及其地质意义:锆石U-Pb年代学、Lu-Hf同位素证据[J]. 地质科技情报,2017,36(6):32-42.

    SHAN L,KE X Z,PANG Y C,et al. Zircon LA-ICP-MS U-Pb chronology,Lu-Hf isotopic characteristics and its geological significance of the Neoproterozoic magma activity in Lishan area from the northeastern Hunan Province[J]. Geological Science and Technology Information,2017,36(6):32-42. (in Chinese with English abstract
    [32] WANG L X,MA C Q,ZHANG C,et al. Genesis of leucogranite by prolonged fractional crystallization:A case study of the Mufushan complex,South China[J]. Lithos,2014,206:147-163.
    [33] JI W B,LIN W,FAURE M,et al. Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan Province (middle Yangtze region),South China:Geodynamic implications for the Paleo-Pacific subduction[J]. Journal of Asian Earth Sciences,2017,141:174-193. doi: 10.1016/j.jseaes.2016.07.005
    [34] WAN L,JIN W,TIAN Y,et al. Petrogenesis of Late Jurassic Mufushan high-Mg diorites and Late Mesozoic tectonic evolution of the eastern South China Block[J]. Gondwana Research,2023,121:118-146. doi: 10.1016/j.gr.2023.04.001
    [35] 文春华,陈剑锋,罗小亚,等. 湘东北传梓源稀有金属花岗伟晶岩地球化学特征[J]. 矿物岩石地球化学通报,2016,35(1):171-177. doi: 10.3969/j.issn.1007-2802.2016.01.020

    WEN C H,CHEN J F,LUO X Y,et al. Geochemical features of the Chuanziyuan rare metal pegmatite in northeastern Hunan,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(1):171-177. (in Chinese with English abstract doi: 10.3969/j.issn.1007-2802.2016.01.020
    [36] LOCOCK A J. An excel spreadsheet to recast analyses of garnet into end-member components,and a synopsis of the crystal chemistry of natural silicate garnets[J]. Computers & Geosciences,2008,34(12):1769-1780.
    [37] LIU Y S,HU Z C,GAO S,et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,2008,257(1/2):34-43.
    [38] SUN S S,MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publications,1989,42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [39] 高利娥,曾令森,石卫刚,等. 喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义[J]. 岩石学报,2012,28(9):2963-2980.

    GAO L E,ZENG L S,SHI W G,et al. Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt:Geochemical characteristics and implications for crustal anatexis[J]. Acta Petrologica Sinica,2012,28(9):2963-2980. (in Chinese with English abstract
    [40] 曾令森,赵令浩,高利娥,等. 喜马拉雅造山带中新世岩浆型石榴子石的矿物化学特征:从高Sr/Y花岗岩到淡色花岗岩[J]. 岩石学报,2019,35(6):1599-1626. doi: 10.18654/1000-0569/2019.06.01

    ZENG L S,ZHAO L H,GAO L E,et al. Magmatic garnet from Mid-Miocene co-genetic high Sr/Y granite and leucogranite from the Himalayan Orogenic Belt,southern Tibet[J]. Acta Petrologica Sinica,2019,35(6):1599-1626. (in Chinese with English abstract doi: 10.18654/1000-0569/2019.06.01
    [41] BEKELE B,SEN A K. The mineral chemistry of gahnite,garnet and columbite-group minerals (CGM):Implications for genesis and evolution of the Kenticha rare-element granite-pegmatite,Adola,Ethiopia[J]. Journal of African Earth Sciences,2020,162:103691. doi: 10.1016/j.jafrearsci.2019.103691
    [42] 付建刚,李光明,董随亮,等. 西藏拉隆穹窿淡色花岗岩中石榴子石矿物学研究及对岩浆−热液过程的指示[J]. 沉积与特提斯地质,2022,42(2):288-299.

    FU J G,LI G M,DONG S L,et al. Mineral chemistry of garnet and its implication for the magmatic-hydrothermal transition in rare metal leucogranites in the Lalong dome,southern Tibet,China[J]. Sedimentary Geology and Tethyan Geology,2022,42(2):288-299. (in Chinese with English abstract
    [43] STEVENS G,VILLAROS A,MOYEN J F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites[J]. Geology,2007,35(1):9-12.
    [44] ZENG L S,GAO L,DONG C Y,et al. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif,southern Tibet[J]. Gondwana Research,2012,21(1):138-151. doi: 10.1016/j.gr.2011.07.023
    [45] 孟繁聪,田广阔,段雪鹏,等. 东昆仑东段金水口石榴堇青石花岗岩成因:石榴子石证据[J]. 矿物岩石地球化学通报,2018,37(2):192-204.

    MENG F C,TIAN G K,DUAN X P,et al. Evidence from garnet for genesis of garnet-cordierite-granite in the Jinshuikou area,eastern segment of the East Kunlun Mountains[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2018,37(2):192-204. (in Chinese with English abstract
    [46] 冯帆,徐仲元,董晓杰,等. 内蒙古乌拉山地区石榴子石花岗岩中石榴子石转熔成因的显微结构及矿物学证据[J]. 地质学报,2022,96(11):3819-3833. doi: 10.3969/j.issn.0001-5717.2022.11.011

    FENG F,XU Z Y,DONG X J,et al. Microstructure and mineralogical evidence for peritectic garnet in thegarnet granite in the Wulashan area,Inner Mongolia[J]. Acta Geologica Sinica,2022,96(11):3819-3833. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2022.11.011
    [47] GREEN T H. Garnet in silicic liquids and its possible use as a P-T indicator[J]. Contributions to Mineralogy and Petrology,1977,65(1):59-67. doi: 10.1007/BF00373571
    [48] SAMADI R,MIRNEJAD H,KAWABATA H,et al. Magmatic garnet in the Triassic (215 Ma) Dehnow pluton of NE Iran and its petrogenetic significance[J]. International Geology Review,2014,56(5):596-621. doi: 10.1080/00206814.2014.880659
    [49] MANNING D A C. Chemical variation in garnets from aplites and pegmatites,peninsular Thailand[J]. Mineralogical Magazine,1983,47:353-358. doi: 10.1180/minmag.1983.047.344.10
    [50] WHITWORTH M P,FEELY M. The compositional range of magmatic Mn-garnets in the Galway Granite,Connemara,Ireland[J]. Mineralogical Magazine,1994,58:163-168.
    [51] CLEMENS J D,WALL V J. Origin and crystallization of some peraluminous (S-type) granitic magmas[J]. Canadian Mineralogist,1981,19(1):111-131.
    [52] KERRICK D M. Experimental determination of muscovite + quartz stability with P H2O total[J]. American Journal of Science,1972,272(10):946-958. doi: 10.2475/ajs.272.10.946
    [53] HARANGI S,DOWNES H,KÓSA L,et al. Almandine garnet in calc-alkaline volcanic rocks of the northern Pannonian Basin (eastern–central Europe):Geochemistry,petrogenesis and geodynamic implications[J]. Journal of Petrology,2001,42(10):1813-1843. doi: 10.1093/petrology/42.10.1813
    [54] QUELHAS P,MATA J,DIAS Á A. Magmatic evolution of garnet-bearing highly fractionated granitic rocks from Macao,Southeast China:Implications for granite-related mineralization processes[J]. Journal of Earth Science,2021,32(6):1454-1471.
    [55] DAHLQUIST J A,GALINDO C,PANKHURST R J,et al. Magmatic evolution of the Peñón Rosado granite:Petrogenesis of garnet-bearing granitoids[J]. Lithos,2007,95(3/4):177-207.
    [56] FITTON J G. The genetic significance of almandine-pyrope phenocrysts in the calc-alkaline Borrowdale Volcanic Group,Northern England[J]. Contributions to Mineralogy and Petrology,1972,36(3):231-248. doi: 10.1007/BF00371434
    [57] FENG Y G,LEI R X,JU M H,et al. Origin and petrogenetic implications of garnet from Rb-rich pegmatites in North Qinling Orogen,China[J]. Geological Journal,2017,52(S1):215-237. doi: 10.1002/gj.3118
    [58] MULLER A,KEARSLEY A,SPRATT J,et al. Petrogenetic implications of magmatic garnet in granitic pegmatites from southern Norway[J]. The Canadian Mineralogist,2012,50(4):1095-1115. doi: 10.3749/canmin.50.4.1095
    [59] MORETZ L,HEIMANN A,BITNER J,et al. The composition of garnet as indicator of rare metal (Li) mineralization in granitic pegmatites[C]//Anon. Proceeding of the 6th International Symposium on Granitic Pegmatites. [S. l. ]:[S. n. ],2013,94-95.
    [60] BOGOCH R,BOURNE J,SHIRAV M,et al. Petrochemistry of a Late Precambrian garnetiferous granite,pegmatite and aplite,southern Israel[J]. Mineralogical Magazine,1997,61:111-122. doi: 10.1180/minmag.1997.061.404.11
    [61] SELWAY J B. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the superior province,Canada,and large worldwide tantalum deposits[J]. Exploration and Mining Geology,2005,14(1/2/3/4):1-30.
    [62] YU M,XIA Q X,ZHENG Y F,et al. The composition of garnet in granite and pegmatite from the Gangdese Orogen in southeastern Tibet:Constraints on pegmatite petrogenesis[J]. American Mineralogist,2021,106(2):265-281. doi: 10.2138/am-2020-7388
    [63] 姜鹏飞,李鹏,李建康,等. 幕阜山东部麦埚铍矿床伟晶岩锆石U-Pb年龄、Hf同位素组成及其地质意义[J]. 矿床地质,2021,40(4):723-739.

    JIANG P F,LI P,LI J K,et al. Zircon U-Pb geochronology and Hf isotopic composition of Be-pegmatites in Maiguo deposit,eastern Mufushan,and their geological implications[J]. Mineral Deposits,2021,40(4):723-739. (in Chinese with English abstract
    [64] 石威科,周芳春,刘翔,等. 湖南仁里矿田锂辉石白云母伟晶岩地质特征及其找矿意义[J]. 地质学报,2020,94(3):817-835.

    SHI W K,ZHOU F C,LIU X,et al. Geological characteristics and the prospecting significance of the spodumene-muscovite pegmatite in the Renli ore-field,Hunan Province[J]. Acta Geologica Sinica,2020,94(3):817-835. (in Chinese with English abstract
    [65] BADANINA E V,VEKSLER I V,THOMAS R,et al. Magmatic evolution of Li-F,rare-metal granites:A case study of melt inclusions in the Khangilay complex,eastern Transbaikalia (Russia)[J]. Chemical Geology,2004,210(1/2/3/4):113-133.
    [66] KAETER D,BARROS R,MENUGE J F,et al. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland:LA-ICP-MS chemical mapping of muscovite and columbite-tantalite[J]. Geochimica et Cosmochimica Acta,2018,240:98-130. doi: 10.1016/j.gca.2018.08.024
    [67] MARKS M A W,MARSCHALL H R,SCHÜHLE P,et al. Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany):The importance of major element composition,sector zoning,and fluid or melt composition[J]. Chemical Geology,2013,344:73-90. doi: 10.1016/j.chemgeo.2013.02.025
    [68] THOMAS R,FÖRSTER H J,HEINRICH W,et al. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions:A melt and fluid-inclusion study[J]. Contributions to Mineralogy and Petrology,2003,144:457-472. doi: 10.1007/s00410-002-0410-5
    [69] VEKSLER I V. Liquid immiscibility and its role at the magmatic-hydrothermal transition:A summary of experimental studies[J]. Chemical Geology,2004,210(1/2/3/4):7-31.
    [70] ZHANG X Y,WANG H,YAN Q H. Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province:Implications for magmatic-hydrothermal evolution[J]. Ore Geology Reviews,2022,150:105178.
    [71] 王联魁,王慧芬,黄智龙. Li-F花岗岩液态分离的微量元素地球化学标志[J]. 岩石学报,2000,16(2):145. doi: 10.3321/j.issn:1000-0569.2000.02.001

    WANG L K,WANG H F,HUANG Z L. Geochemical indicators of trace element in Li-F granite liquid segregation[J]. Acta Petrologica Sinica,2000,16(2):145. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0569.2000.02.001
    [72] 鄢明才,迟清华,顾铁新,等. 中国东部地壳元素丰度与岩石平均化学组成研究[J]. 物探与化探,1997,21(6):451-459.

    YAN M C,CHI Q H,GU T X,et al. Chemical compositions of continental crust and rocks in eastern China[J]. Geophysical and Geochemical Exploration,1997,21(6):451-459. (in Chinese with English abstract
    [73] 孟玉净,骆杨,赵彦超,等. 泾河油田走滑断裂带长8-长6段致密砂岩构造成岩作用及控储分析[J]. 地质科技通报,2025,44(1):74-89.

    MENG Y J,LUO Y,ZHAO Y C,et al. Structural diagenesis and reservoir control analysis of tight sandstone in the strike-slip fault zones of the Chang 8 to Chang 6 Members in the Jinghe Oilfield[J]. Bulletin of Geological Science and Technology,2025,44(1):74-89. (in Chinese with English abstract
    [74] 花旗,夏庆霖,刘奇锋. 基于数据驱动的南岭地区花岗岩岩体含矿性判别[J]. 地质科技通报,2025,44(1):332-345.

    HUA Q,XIA Q L,LIU Q F. Ore-bearing discrimination of granite rock masses in the Nanling area via data-driven models[J]. Bulletin of Geological Science and Technology,2025,44(1):332-345. (in Chinese with English abstract
    [75] 热西提·亚力坤,黄雷,杨帆,等. 烧变岩矿物相特征及其转化[J]. 煤田地质与勘探,2024,52(8):134-144.

    REXITI Y L K,HUANG L,YANG F,et al. Characteristics and transformations of mineral phases in burnt rocks[J]. Coal Geology & Exploration,2024,52(8):134-144. (in Chinese with English abstract
    [76] 刘俊民,张关龙,赵乐强,等. 胜利探区油气共/伴生资源综合利用前景[J]. 油气地质与采收率,2024,31(4):207-216.

    LIU J M,ZHANG G L,ZHAO L Q,et al. Prospects for comprehensive utilization of symbiotic/associated oil and gas resources in exploration area of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency,2024,31(4):207-216. (in Chinese with English abstract
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  310
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 录用日期:  2023-11-27
  • 修回日期:  2023-11-21
  • 网络出版日期:  2024-06-07

目录

    /

    返回文章
    返回