Quantitative characterization of the clastic particle size of tight sandstone and its indicative significance for productivity
-
摘要:
粒度分析可以判别地层沉积环境和评价储层渗透性,对碎屑岩油气储层评价十分重要。以四川盆地天府气田沙溪庙组致密砂岩储层为研究对象,分析了碎屑岩颗粒大小和形状对储层渗透性的影响,结合粒度中值
M 、粒度C 值、分选系数等参数,提出了一个综合表征粒度的指示参数PI ,对颗粒粒度比较敏感的测井参数自然伽马、光电吸收截面指数和中子进行主成分分析,降维成一个主成分参数,建立了粒度指示参数PI 与主成分参数的指数关系模型,结合测试及测井资料,分析了粒度指示参数PI 与储层产能的相关关系。统计了天府气田沙溪庙组7口井8个测试气层段,并通过上述方法计算了7口井的粒度指示参数PI 值,分析了测试段无阻流量与粒度指示参数PI 的响应关系。结果显示:天府气田沙溪庙组测试段无阻流量与粒度指示参数PI 的累加值X 呈指数关系,其相关系数R 2达到0.85。研究说明:对于岩性以中−细粒砂岩为主,粒级变化大,且储集空间以残余粒间孔为主的储层,粒度指示参数PI 在一定程度上可以指示该种类型储层的产能大小。Abstract:Objective Particle size analysis is important for the evaluation of clastic petroleum reservoirs because it can identify the stratigraphic depositional environment and assess the permeability of reservoirs.
Methods Using the dense sandstone reservoir of the Shaximiao Formation in the Tianfu Gas Field in the Sichuan Basin as the research object, we first analyzed the influence of the particle size and shape on the permeability of the clastic rock reservoir. Next, we combined the median and
C values of the particle size and the sorting coefficient to perform a comprehensive characterization of the particle size indicator parameter (PI ). Additionally, we carried out a principal component analysis on the natural gamma-ray logging value, photoelectric absorption cross-section index, and neutron porosity, which are more sensitive to particle size. An exponential relationship model between the PI and the principal component parameter was established. Finally, the correlation between PI and reservoir production capacity was analyzed by combining the Oil test and logging data.Results The statistics of 8 test gas sections from 7 wells in the Shaximiao Formation of Tianfu Gas Field were collected, and the
PI values of 7 wells were calculated using the above method. The response relationship between the unimpeded flow rate and thePI was analyzed in the test sections, and the results revealed that the unimpeded flow rate and the cumulativePI values in the Shaximiao Formation exhibited an exponential relationship, with a correlation coefficient of 0.85.Conclusion This study reveals that, for reservoirs whose lithology is dominated by medium- to fine-grained sandstone, with large variations in grain size, and with storage space dominated by residual intergranular pores, the
PI can, to some extent, serve as an indicator of the production capacity of this type of reservoir. -
图 2 颗粒大小和形状对储层渗透性的影响(改自文献[22])
KH1>KH2>KH3;KV1>KV2>KV3;KH 为垂向渗透率;KV为水平渗透率
Figure 2. Influence of particle size and shape on reservoir permeability
图 3 天府区块沙溪庙组PI与测井参数之间的皮尔逊相关图
PI. 粒度指示参数;M. M-N交会图中的M(也叫岩性指示参数);N. M-N交会图中的N(也叫岩性指示参数);X. 冲洗带电阻率与孔隙度平方的乘积,$X=R_{xo}\phi^2 $;AC. 声波时差;CNL. 补偿中子;DEN. 补偿密度;GR. 自然伽马;PE. 光电吸收截面指数;RT. 深侧向电阻率;RXO. 浅侧向电阻率;下同
Figure 3. Pearson correlation between PI and logging parameters of the Shaximiao Formation in the Tianfu Block
表 1 主成分分析结果
Table 1. Results of the principal component analysis
主成分 初始特征值 主成分相关系数 主成分矩阵 特征值 方差/% 累计方差/% ZGR ZPE ZCNL ZGR ZPE ZCNL F1 2.308 83.675 83.675 0.583 0.456 0.545 0.886 0.693 0.828 F2 0.497 10.676 94.351 — — — — — — F3 0.228 5.649 100 — — — — — — -
[1] 何幼斌,王文广. 沉积岩与沉积相[M]. 北京:石油工业出版社,2007.HE Y B,WANG W G. Sedimentary rocks and sedimentary facies[M]. Beijing:Petroleum Industry Press,2007. (in Chinese) [2] 王有鹏,李德文,王锦鹏. 金沙江巧家段冲积物动态图像法粒度特征研究[J]. 地质论评,2019,65(2):503-513.WANG Y P,LI D W,WANG J P. Analysis on grain size of alluvial sediments in the Qiaojia segment,Upper Yangtze River,based on dynamic image method[J]. Geological Review,2019,65(2):503-513. (in Chinese with English abstract [3] SHULKIN V M,STRUKOV A Y. Particle-size analysis of modern bottom sediments by the laser diffraction and sieve methods[J]. Russian Journal of Pacific Geology,2020,14(4):378-386. doi: 10.1134/S1819714020040053 [4] 尤帆,耿向. 筛分法和激光粒度法联合测定陆源碎屑岩粒度[J]. 计量学报,2021,42(3):380-387.YOU F,GENG X. Granularity of terrigenous clastic rock using sieving method and laser particle size[J]. Acta Metrologica Sinica,2021,42(3):380-387. (in Chinese with English abstract [5] 田宇昕. 沉积物粒度分析方法的比较[J]. 信息系统工程,2019(12):147-148.TIAN Y X. Comparison of sediment particle size analysis methods[J]. China CIO News,2019(12):147-148. (in Chinese) [6] PASSEGA R. Texture as characteristic of clastic deposition[J]. AAPG Bulletin,1957,41(9):152-1984. [7] PASSEGA R. Grain size representation by CM patterns as a geologic tool[J]. Journal of Sedimentary Research,1964,34(4):830-847. doi: 10.1306/74D711A4-2B21-11D7-8648000102C1865D [8] PASSEGA R. Sediment sorting related to basin mobility and environment[J]. AAPG Bulletin,1972,56(12):2440-2450. [9] PASSEGA R. Significance of CM diagrams of sediments deposited by suspensions[J]. Sedimentology,1977,24(5):723-733. doi: 10.1111/j.1365-3091.1977.tb00267.x [10] 葛东升,刘玉明,柳雪青,等. 粒度分析在致密砂岩储层及沉积环境评价中的应用[J]. 特种油气藏,2018,25(1):41-45.GE D S,LIU Y M,LIU X Q,et al. Application of grain size analysis in tight sandstone reservoir and sedimentary environment evaluation[J]. Special Oil & Gas Reservoirs,2018,25(1):41-45. (in Chinese with English abstract [11] DAWELBEIT A,JAILLARD E,EISAWI A. Grain size analysis of the Latest Quaternary Kordofan sand of Central Sudan:Depositional environment and mode of transportation[J]. Aeolian Research,2022,55:100785. doi: 10.1016/j.aeolia.2022.100785 [12] WIDED S,JALILA S,KAMEL R. Grain size analysis and characterization of sedimentary environment along the Bizerte Coast,N-E of Tunisia[J]. Journal of African Earth Sciences,2021,184:104353. doi: 10.1016/j.jafrearsci.2021.104353 [13] 陈欢庆,舒治睿,林春燕,等. 粒度分析在砾岩储层沉积环境研究中的应用:以准噶尔盆地西北缘某区克下组冲积扇储层为例[J]. 西安石油大学学报(自然科学版),2014,29(6):6-12.CHEN H Q,SHU Z R,LIN C Y,et al. Application of grain-size analysis in research of sedimentary environment of conglomerate reservoir:Taking alluvial fan reservoir in the lower member of Kelamayi Formation in some area of the northwestern margin of Zhunger Basin as an example[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2014,29(6):6-12. (in Chinese with English abstract [14] 刘宏坤,艾勇,王贵文,等. 深层、超深层致密砂岩储层成岩相测井定量评价:以库车坳陷博孜−大北地区为例[J]. 地质科技通报,2023,42(1):299-310.LIU H K,AI Y,WANG G W,et al. Quantitative well logging evaluation of diagenetic facies of deep and ultra deep tight sandstone reservoirs:A case study of Bozi-Dabei area in Kuqa Depression[J]. Bulletin of Geological Science and Technology,2023,42(1):299-310. (in Chinese with English abstract [15] 康积伦,王家豪,马强,等. 准噶尔盆地吉木萨尔凹陷芦草沟组细粒湖底扇沉积及其页岩油储层意义[J]. 地质科技通报,2023,42(5):82-93.KANG J L,WANG J H,MA Q,et al. Fine-grained sublacustrine fan deposits and their significance in shale oil reservoirs in the Lucaogou Formation in the Jimsar Sag,Junggar Basin[J]. Bulletin of Geological Science and Technology,2023,42(5):82-93. (in Chinese with English abstract [16] 赵军,代新雲,古莉,等. 基于粒度控制的复杂储层渗透性建模方法[J]. 吉林大学学报(地球科学版),2016,46(1):279-285.ZHAO J,DAI X Y,GU L,et al. Method of permeability model establishment based on the complex reservoir controlled by particle-size[J]. Journal of Jilin University (Earth Science Edition),2016,46(1):279-285. (in Chinese with English abstract [17] 陶文芳,葛家旺,雷永昌,等. 转换斜坡型辫状河三角洲沉积特征:以珠江口盆地惠州凹陷始新统为例[J]. 地质科技通报,2023,42(5):103-114.TAO W F,GE J W,LEI Y C,et al. Depositional characteristics of a relay ramp controlled braided deltaic system:A case study in the Eocene Huizhou Sag,Pearl River Mouth Basin,China[J]. Bulletin of Geological Science and Technology,2023,42(5):103-114. (in Chinese with English abstract [18] 潘保芝,房春慧,郭宇航,等. 基于岩石物理转换模型的苏里格致密砂岩储层测井评价与产能预测[J]. 地球物理学报,2018,61(12):5115-5124.PAN B Z,FANG C H,GUO Y H,et al. Logging evaluation and productivity prediction of Sulige tight sandstone reservoirs based on petrophysics transformation models[J]. Chinese Journal of Geophysics,2018,61(12):5115-5124. (in Chinese with English abstract [19] 谢晓庆,吴伟,程亮,等. 粒度分析在复杂岩性储层渗透率建模中的应用[J]. 工程地球物理学报,2022,19(3):310-315.XIE X Q,WU W,CHENG L,et al. Application of granularity analysis in permeability modeling of complex lithologic reservoir[J]. Chinese Journal of Engineering Geophysics,2022,19(3):310-315. (in Chinese with English abstract [20] 罗利,朱心万,常俊,等. 苏5、桃7区块不同粒度碎屑岩测井识别方法[J]. 天然气工业,2007,27(12):36-38.LUO L,ZHU X W,CHANG J,et al. Logging recognition methods for clastic rocks with different granularities in blocks Su-5 and Tao-7[J]. Natural Gas Industry,2007,27(12):36-38. (in Chinese with English abstract [21] 戴建,张平. 几种沉积物图解法与矩值法粒度参数的对比研究及其意义[J]. 地质学刊,2017,41(2):239-244.DAI J,ZHANG P. Comparison and its significance of grain-size parameters of several sediments with graphic method and moment method[J]. Journal of Geology,2017,41(2):239-244. (in Chinese with English abstract [22] DJEBBAR T,ERLE C D. 岩石物理学[M]. 胡法龙,李潮流,李霞,等译,北京:石油工业出版社,2016.DJEBBAR T,ERLE C D. Petrophysics[M]. Translated by HU F L,LI C L,LI X,et al,Beijing:Petroleum Industry Press,2016. (in Chinese) [23] 胡松,张超谟,胡瑶,等. 基于主成分分析的砂砾岩储层孔隙度计算方法研究[J]. 石油天然气学报,2010,32(3):100-104.HU S,ZHANG C M,HU Y,et al. Method of porosity calculation of glutenite rocks based on principal component analysis[J]. Journal of Oil and Gas Technology,2010,32(3):100-104. (in Chinese with English abstract [24] 申波,毛志强,樊海涛,等. 基于主成分分析技术计算蚀变地层孔隙度的新方法[J]. 测井技术,2012,36(2):130-134.SHEN B,MAO Z Q,FAN H T,et al. A new porosity calculation method based on principal component analytical technology for altered formation[J]. Well Logging Technology,2012,36(2):130-134. (in Chinese with English abstract [25] 毛志强,李进福. 油气层产能预测方法及模型[J]. 石油学报,2000,21(5):58-61.MAO Z Q,LI J F. Method and models for productivity prediction of hydrocarbon reservoirs[J]. Acta Petrolei Sinica,2000,21(5):58-61. (in Chinese with English abstract [26] 王跃祥,牟瑜,谢冰,等. 川中地区沙溪庙组致密砂岩含气性测井评价技术[J]. 测井技术,2023,47(1):42-47.WANG Y X,MU Y,XIE B,et al. Gas-bearing properties log evaluation technique for tight sandstone of shaximiao formation in the central region of Sichuan Basin[J]. Well Logging Technology,2023,47(1):42-47. (in Chinese with English abstract [27] 杨雨,谢继容,曹正林,等. 四川盆地天府气田沙溪庙组大型致密砂岩气藏形成条件及勘探开发关键技术[J]. 石油学报,2023,44(6):917-932.YANG Y,XIE J R,CAO Z L,et al. Forming conditions and key technologies for exploration and development oflarge tight sandstone gas reservoirs in Shaximiao Formation,Tianfu gas field of Sichuan Basin[J]. Acta Petrolei Sinica,2023,44(6):917-932. (in Chinese) [28] 王跃祥,赵佐安,唐玉林,等. 基于知识驱动图版约束的致密砂岩气储层测井参数智能预测[J]. 天然气工业,2024,44(9):68-76.WANG Y X,ZHAO Z A,TANG Y L,et al. Intelligent prediction of logging parameters of tight sandstone gas reservoirs based on knowledge-driven chart constraints[J]. Natural Gas Industry,2024,44(9):68-76. (in Chinese with English abstract [29] 王力,刘岩,曹茜,等. 四川盆地中部须家河组致密砂岩储层孔喉结构分类评价[J]. 东北石油大学学报,2024,48(4):41-53.WANG L,LIU Y,CAO Q,et al. Classification and evaluation of pore throat structure in tight sandstone reservoirs of the Xujiahe Formation in the central Sichuan Basin[J]. Journal of Northeast Petroleum University,2024,48(4):41-53. (in Chinese with English abstract [30] 戴金星,董大忠,倪云燕,等. 致密砂岩气藏与页岩气藏展布模式[J]. 石油勘探与开发,2024,51(4):667-678.DAI J X,DONG D Z,NI Y Y,et al. Distribution patterns of tight sandstone gas and shale gas[J]. Petroleum Exploration and Development,2024,51(4):667-678. (in Chinese with English abstract [31] 夏小勇,王跃祥,谢冰,等. 阵列声波测井在致密砂岩气藏含气性评价中的应用[J]. 天然气勘探与开发,2024,47(3):77-84.XIA X Y,WANG Y X,XIE B,et al. Array acoustic logging to evaluate gas-bearing property in tight sandstone gas reservoirs[J]. Natural Gas Exploration and Development,2024,47(3):77-84. (in Chinese with English abstract [32] 汪忠浩,李森,汤翟,等. 基于储层分类的特低渗砂岩储层渗透率模型研究[J/OL]. 长江大学学报(自然科学版),2024:1-12. (2024-03-20). https://link. cnki. net/doi/10.16772/j. cnki. 1673-1409.20240320. 001.WANG Z H,LI S,TANG Z,et al. Study on permeability model of ultra-low permeability sandstone reservoir based on reservoir classification[J/OL]. Journal of Yangtze University (Natural Science Edition),2024:1-12. (2024-03-20). https://link.cnki.net/doi/10.16772/j.cnki.1673-1409.20240320.001. (in Chinese with English abstract [33] 肖曦,王志红,叶云飞,等. 致密砂岩储层孔隙度预测方法研究[J]. 地球物理学进展,2024,39(4):1597-1606.XIAO X,WANG Z H,YE Y F,et al. Novel porosity prediction method for tight sandstone reservoirs:A case study of member of He8,Ordos Basin,Northern China[J]. Progress in Geophysics,2024,39(4):1597-1606. (in Chinese with English abstract [34] 陈少云,杨勇强,邱隆伟,等. 致密砂岩孔喉结构分析与渗透率预测方法:以川中地区侏罗系沙溪庙组为例[J]. 石油实验地质,2024,46(1):202-214.CHEN S Y,YANG Y Q,QIU L W,et al. Pore throat structure analysis and permeability prediction method of tight sandstone:A case study of Jurassic Shaximiao Formation in central Sichuan Basin[J]. Petroleum Geology & Experiment,2024,46(1):202-214. (in Chinese with English abstract [35] 李朋威,胡宗全,刘忠群,等. 川西新场地区须二段深层致密砂岩储层类型与差异控储作用[J]. 天然气地球科学,2024,35(7):1136-1149.LI P W,HU Z Q,LIU Z Q,et al. Types of the deep tight sandstone reservoirs and their different controlling in the second member of Xujiahe Formation in Xinchang area,western Sichuan Basin[J]. Natural Gas Geoscience,2024,35(7):1136-1149. (in Chinese with English abstract [36] 刘君毅,冯进,管耀,等. 基于改进电成像孔隙度谱的海洋低孔低渗砂岩渗透率评价方法[J]. 测井技术,2023,47(6):746-752.LIU J Y,FENG J,GUAN Y,et al. Permeability evaluation method for marine low porosity and permeability sandstone based on improved electrical imaging porosity spectrum[J]. Well Logging Technology,2023,47(6):746-752. (in Chinese with English abstract [37] 皮伟,陈敬轶. 鄂尔多斯盆地北部致密砂岩储层特征及测井识别[J]. 科学技术与工程,2023,23(31):13265-13272.PI W,CHEN J Y. Characteristics of tight sandstone reservoirs and logging identification in the northern Ordos Basin[J]. Science Technology and Engineering,2023,23(31):13265-13272. (in Chinese with English abstract [38] 王道伸,辛红刚,葸克来,等. 致密砂岩储层孔喉结构特征及其对含油性的控制作用:以鄂尔多斯盆地志靖—安塞地区延长组8段为例[J]. 天然气地球科学,2024,35(4):623-634.WANG D S,XIN H G,XI K L,et al. Characteristics of pore throat structure and its control on oiliness in tight sandstone reservoirs:Case study of the 8th member of Yanchang Formation in Zhijing-Ansai area,Ordos Basin[J]. Natural Gas Geoscience,2024,35(4):623-634. (in Chinese with English abstract [39] 甯波,任大忠,王虎,等. 致密砂岩气藏微观孔隙结构多尺度联合表征[J]. 断块油气田,2024,31(1):34-41.NING B,REN D Z,WANG H,et al. Multi-scale combination characterization of micropore structure of tight sandstone gas reservoirs[J]. Fault-Block Oil & Gas Field,2024,31(1):34-41. (in Chinese) [40] 赵振,刘震,何发岐,等. 鄂尔多斯盆地北部盒1段致密砂岩储层动态评价[J]. 天然气地球科学,2024,35(3):449-464.ZHAO Z,LIU Z,HE F Q,et al. Dynamic evaluation of tight sandstone reservoir in the He1 member,northern Ordos Basin[J]. Natural Gas Geoscience,2024,35(3):449-464. (in Chinese with English abstract [41] 王清辉,朱明,冯进,等. 基于渗透率合成技术的砂岩油藏产能预测方法[J]. 石油钻探技术,2021,49(6):105-112. doi: 10.11911/syztjs.2021122WANG Q H,ZHU M,FENG J,et al. A method for predicting productivity of sandstone reservoirs based on permeability synthesis technology[J]. Petroleum Drilling Techniques,2021,49(6):105-112. (in Chinese with English abstract doi: 10.11911/syztjs.2021122 [42] 范宜仁,宋岩,张海涛,等. 低渗透致密砂岩气层产能预测方法研究[J]. 测井技术,2016,40(5):602-608.FAN Y R,SONG Y,ZHANG H T,et al. Capacity prediction methods of tight gas sandstone reservoir with low permeability[J]. Well Logging Technology,2016,40(5):602-608. (in Chinese with English abstract -