留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

澜沧江某巨型堆积体蓄水失稳诱发涌浪预测

胡大儒 吴述彧 罗超鹏 邓辉 李鹏飞 王照英

胡大儒, 吴述彧, 罗超鹏, 邓辉, 李鹏飞, 王照英. 澜沧江某巨型堆积体蓄水失稳诱发涌浪预测[J]. 地质科技通报, 2024, 43(6): 78-88. doi: 10.19509/j.cnki.dzkq.tb20230598
引用本文: 胡大儒, 吴述彧, 罗超鹏, 邓辉, 李鹏飞, 王照英. 澜沧江某巨型堆积体蓄水失稳诱发涌浪预测[J]. 地质科技通报, 2024, 43(6): 78-88. doi: 10.19509/j.cnki.dzkq.tb20230598
HU Daru, WU Shuyu, LUO Chaopeng, DENG Hui, LI Pengfei, WANG Zhaoying. Prediction of the wave induced by a gaint accumulation impoundment instability in Lantsang River[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 78-88. doi: 10.19509/j.cnki.dzkq.tb20230598
Citation: HU Daru, WU Shuyu, LUO Chaopeng, DENG Hui, LI Pengfei, WANG Zhaoying. Prediction of the wave induced by a gaint accumulation impoundment instability in Lantsang River[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 78-88. doi: 10.19509/j.cnki.dzkq.tb20230598

澜沧江某巨型堆积体蓄水失稳诱发涌浪预测

doi: 10.19509/j.cnki.dzkq.tb20230598
基金项目: 

国家重点研发计划项目 2017YFC1501100

详细信息
    作者简介:

    胡大儒, E-mail: hudaru@ghidri.com.cn

    通讯作者:

    罗超鹏, E-mail: luocp1997@163.com

  • 中图分类号: P642.22

Prediction of the wave induced by a gaint accumulation impoundment instability in Lantsang River

More Information
  • 摘要:

    澜沧江上游拟建RM水电站, 其蓄水运行可能导致近坝左岸RS巨型堆积体发生变形失稳, 进而诱发滑坡涌浪灾害, 威胁枢纽建筑物和下游居民安全。结合前期大量地质勘察及物理力学试验资料, 采用大型离心机模型试验等方法, 进行了RS堆积体蓄水潜在失稳破坏模式研究。在此基础上, 建立了RS堆积体至大坝段全河道的三维数值模型, 开展了RS堆积体滑坡-涌浪链式灾害动力学灾变全过程数值分析, 对滑坡涌浪的首浪高度、对岸爬坡浪高、沿途传播特征、坝前浪高、沿大坝爬升高度等进行了预测分析。结果表明: 随着水库蓄水位逐步抬升至2 800 m高程, RS堆积体最可能发生较大规模的失稳破坏, 其后缘拉裂边界为蓄水位以上一定范围的堆积体碎石土层、前缘剪切边界为堆积体中下部细颗粒层。堆积体失稳破坏后诱发滑坡涌浪, 首浪高度在入水点附近达到峰值, 约为31.5 m, 历时约15 s。涌浪沿河道向下游传播通过①号河湾前后浪高衰减39.5%, 涌浪在约147 s时传至大坝处并沿坝坡继续爬升, 爬坡浪高约为2.6 m, 历时180 s, 首浪及后续小浪均无翻坝风险。首浪受大坝阻挡消能后, 随即向上游反向传播形成回涌现象, 回涌与后续涌浪撞击形成局部高浪区, 至P5监测点处回涌浪高达到最大, 约为4.56 m, 历时219 s。涌浪传播过程中, 河湾地形及回涌现象可大幅加速涌浪能量衰减, 有效降低涌浪冲击与次生灾害风险。

     

  • 图 1  RS堆积体地形地貌航拍图

    Figure 1.  Topographic map of RS accumulation by aerial photography

    图 2  RS堆积体工程地质平面图(a)和R2-R2′剖面图(b)

    Figure 2.  Engineering geological plan(a) and R2-R2′ profile (b) of RS accumulation

    图 3  离心试验设备(a)及模型(b)

    Figure 3.  Centrifuge test equipment(a) and model(b)

    图 4  RS堆积体模型失稳破坏过程

    Figure 4.  Instability failure process of RS accumulation model

    图 5  RS堆积体失稳破坏模式示意图

    Figure 5.  Schematic diagram of instability failure of RS accumulation

    图 6  RS堆积体至大坝段三维数值计算模型

    Figure 6.  Three-dimensional numerical calculation model of RS accumulation to dam

    图 7  RS堆积体失稳诱发涌浪传播过程(t为滑坡体开始失稳到各阶段经历的时间)

    Figure 7.  Wave propagation process induced by instability failure of RS accumulation

    图 8  堆积体失稳监测点(入水点)P1自由液面高程

    Figure 8.  Free liquid level elevation of the accumulation at instable monitoring point(water entry point) P1

    图 9  监测点P2、P3自由液面高程

    Figure 9.  Free liquid level elevation at monitoring points P2 and P3

    图 10  监测点P4、P5、P6自由液面高程

    Figure 10.  Free liquid level elevation at monitoring points P4, P5 and P6

    图 11  坝址处涌浪壅高

    Figure 11.  Backwater elevation of wave at the dam site

    图 12  河道两岸对涌浪传播的阻碍作用

    Figure 12.  Barriers to wave propagation on both sides of the river

    图 13  各监测点最大浪高

    Figure 13.  Maximum wave height at each monitoring point

    表  1  RS堆积体离心模型参数

    Table  1.   Parameters of RS accumulation centrifuge model

    指标类别 碎石土层 细颗粒层 砂卵砾石层
    容重/(kN·m-3) 22 21 21.5
    内摩擦角/(°) 34.5 33 35.5
    黏聚力/kPa 10 50 20
    wB/ % 粒径(2, 5]mm 30 0 50
    粒径(1, 2]mm 10 0 30
    粒径(0.5, 1]mm 10 0 10
    粒径≤0.5 mm 50 100 10
    下载: 导出CSV

    表  2  各监测点距RS堆积体中点距离

    Table  2.   Distance between each monitoring point and the midpoint of RS accumulation

    监测点 P1 P2 P3 P4 P5 P6 P7
    距离/km 0 0.6 1.5 4.1 4.9 5.5 6.0
    下载: 导出CSV

    表  3  弹塑性体关键参数

    Table  3.   Key parameters of elastoplastic body

    密度/ (kg· m-3) 黏度/ (kg·m-1· s-1) 内摩擦角/ (°) 弹性模量/ GPa 泊松比 弹性-黏塑性特征
    剪切模量/MPa 屈服模量/MPa
    2 200 0.01 37.5 0.09 0.35 0.12 0.3
    下载: 导出CSV

    表  4  滑坡涌浪预测结果对比

    Table  4.   Comparison of landslide-wave prediction results

    计算方法 首浪高度/m 坝址爬高/m
    美国土木工程协会推荐方法 34.5 6.4
    FLOW-3D数值计算 31.5 2.6
    下载: 导出CSV
  • [1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454.

    HUANG R Q. Large-scale landslides and their sliding mechanisms in China since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. (in Chinese with English abstract)
    [2] 湛正刚, 程瑞林, 孙卫, 等. 水库区大型堆积体灾变分析及对策研究[J]. 岩土工程学报, 2022, 44(1): 194-200.

    ZHAN Z G, CHENG R L, SUN W, et al. Disaster analysis and countermeasures of large accumulation in reservoir areas[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 194-200. (in Chinese with English abstract)
    [3] 周定义, 左小清, 喜文飞, 等. 基于SBAS-InSAR技术的深切割高山峡谷区滑坡灾害早期识别[J]. 中国地质灾害与防治学报, 2022, 33(2): 16-24.

    ZHOU D Y, ZUO X Q, XI W F, et al. Early identification of landslide hazards in deep cut alpine canyon using SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 16-24. (in Chinese with English abstract)
    [4] 钟立勋. 意大利瓦依昂水库滑坡事件的启示[J]. 中国地质灾害与防治学报, 1994, 5(2): 77-84.

    ZHONG L X. Enlightenments from the accident of Vaiont landslide in Italy[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(2): 77-84. (in Chinese with English abstract)
    [5] ROBERTS N J, MCKILLOP R J, LAWRENCE M S, et al. Impacts of the 2007 landslide-generated tsunami in Chehalis Lake, Canada[M]//MARGOTTINI C, CANUTI P, SASSA K. Landslide science and practice. Berlin, Heidelberg: Springer, 2013: 133-140.
    [6] ROBERTS N J, MCKILLOP R, HERMANNS R L, et al. Preliminary global catalogue of displacement waves from subaerial landslides[M]//SASSA K, CANUTI P, YIN Y P. Landslide science for a safer geoenvironment. Cham: Springer International Publishing, 2014: 687-692.
    [7] PARIS A, OKAL A E, GUÉRIN C, et al. Numerical modeling of the June 17, 2017 landslide and tsunami events in Karrat Fjord, West Greenland[J]. Pure and Applied Geophysics, 2019, 176(7): 3035-3057. doi: 10.1007/s00024-019-02123-5
    [8] 肖莉丽, 王佳佳, 李枝强, 等. 考虑滑体-水体相互作用的滑坡涌浪产生过程动力学模型研究[J]. 岩石力学与工程学报, 2022, 41(12): 2404-2416.

    XIAO L L, WANG J J, LI Z Q, et al. Research on dynamic models of landslide tsunami generation considering slide/water interactions[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(12): 2404-2416. (in Chinese with English abstract)
    [9] MOHAMMED F, FRITZ H M. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[J]. Journal of Geophysical Research-Oceans, 2012, 117: C11015.
    [10] 汪洋, 殷坤龙. 水库库岸滑坡涌浪的传播与爬高研究[J]. 岩土力学, 2008, 29(4): 1031-1034.

    WANG Y, YIN K L. Research on propagat and climb height of surge triggered by landslide in reservoir[J]. Rock and Soil Mechanics, 2008, 29(4): 1031-1034. (in Chinese with English abstract)
    [11] GYLFADÓTTIR S S, KIM J, HELGASON J K, et al. The 2014 Lake Askja rockslide-induced tsunami: Optimization of numerical tsunami model using observed data[J]. Journal of Geophysical Research(Oceans), 2017, 122(5): 4110-4122.
    [12] 徐文杰. 滑坡涌浪流-固耦合分析方法与应用[J]. 岩石力学与工程学报, 2020, 39(7): 1420-1433.

    XU W J. Fluid-solid coupling method of landslide tsunamis and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1420-1433. (in Chinese with English abstract)
    [13] 李东阳, 年廷凯, 吴昊, 等. 滑坡-堵江-涌浪灾害链模拟的DEM-CFD耦合分析方法及其应用[J]. 工程科学与技术, 2023, 55(1): 141-149.

    LI D Y, NIAN T K, WU H, et al. Coupled DEM-CFD method for landslide-river blockage-impulse wave disaster chain simulation and its application[J]. Advanced Engineering Sciences, 2023, 55(1): 141-149. (in Chinese with English abstract)
    [14] 谢媛华, 张国伟, 曹宗伟, 等. 三峡库区白水河滑坡位移与裂缝分形特征[J]. 地质科技通报, 2024, 43(4): 244-251. doi: 10.19509/j.cnki.dzkq.tb20230166

    XIE Y H, ZHANG G W, CAO Z W, et al. fractal characteristics of displacement and cracks of Baishuihe landslide in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 244-251. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230166
    [15] 殷坤龙, 张宇, 汪洋. 水库滑坡涌浪风险研究现状和灾害链风险管控实践[J]. 地质科技通报, 2022, 41(2): 1-12. doi: 10.19509/j.cnki.dzkq.2022.0064

    YIN K L, ZHANG Y, WANG Y. A review of landslide-generated waves risk and practice of management of hazard chain risk from reservoir landslide[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 1-12. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0064
    [16] 刘威, 杨宗佶, 游勇, 等. 滑坡涌浪诱发冰湖溃决灾害链过程分析与模拟[J]. 工程科学与技术, 2022, 54(2): 41-48.

    LIU W, YANG Z J, YOU Y, et al. Dynamic analysis and numerical simulation of disaster chain from landslide, surge wave to glacier lake outburst[J]. Advanced Engineering Sciences, 2022, 54(2): 41-48. (in Chinese with English abstract)
    [17] 罗超鹏, 常鸣, 武彬彬, 等. 基于FLOW-3D的泥石流龙头运动过程模拟研究[J]. 中国地质灾害与防治学报, 2022, 33(6): 53-62.

    LUO C P, CHANG M, WU B B, et al. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 53-62. (in Chinese with English abstract)
    [18] 胡大儒, 肖万春, 王晓朋, 等. 澜沧江某巨型堆积体蓄水失稳模式预测研究[J]. 水利与建筑工程学报, 2020, 18(5): 137-142.

    HU D R, XIAO W C, WANG X P, et al. Prediction of instability model during impoundment period of a giant deposit in Lantsang River[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(5): 137-142. (in Chinese with English abstract)
    [19] WU S Y, HU D R, WEN T. Special characteristics and stability analysis of bank slope deposits with special geotechnical structures in high and cold valleys[J]. Sustainability, 2023, 15(7): 6090. doi: 10.3390/su15076090
    [20] 周鑫. 金沙江上游茂顶河段滑坡成因机制及敏感性研究[D]. 长春: 吉林大学, 2019.

    ZHOU X. The mechanism analysis and susceptibility mapping of the landslides along the Maoding River at the upstream of the Jinsha River[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract)
    [21] 许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151.

    XU Q. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151. (in Chinese with English abstract)
    [22] 王海. 土工离心模型试验技术若干关键问题研究[D]. 北京: 中国地震局工程力学研究所, 2019.

    WANG H. Research on several crucial problems of geotechnical centrifuge modeling techniques[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 2019. (in Chinese with English abstract)
    [23] 郭长宝, 张永双, 刘定涛, 等. 基于离心机模型试验的甘肃江顶崖古滑坡复活机理研究[J]. 工程地质学报, 2022, 30(1): 164-176.

    GUO C B, ZHANG Y S, LIU D T, et al. Centrifuge model test of reactivation mechanism of Jiangdingya ancient landslide in Gansu Province[J]. Journal of Engineering Geology, 2022, 30(1): 164-176. (in Chinese with English abstract)
    [24] 魏迎奇, 张雪东, 张紫涛, 等. 基于LXJ-4-450平台的土工离心模型试验研究[J]. 水利学报, 2018, 49(9): 1087-1096.

    WEI Y Q, ZHANG X D, ZHANG Z T, et al. Geotechnical centrifuge modelling based on LXJ-4-450 platform[J]. Journal of Hydraulic Engineering, 2018, 49(9): 1087-1096. (in Chinese with English abstract)
    [25] ZHAO K, XU Q, LIU F, et al. Centrifuge modeling of loess slope failure induced by rising water level utilizing intact sample[J]. Engineering Failure Analysis, 2024, 163: 108572-108572. doi: 10.1016/j.engfailanal.2024.108572
    [26] SAAD Y, SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869. doi: 10.1137/0907058
    [27] DE CARVALHO R F, DO CARMO J S A. Landslides into reservoirs and their impact on banks[J]. Environmental Fluid Mechanics, 2007, 7(6): 481-493. doi: 10.1007/s10652-007-9039-2
    [28] AJMANI K, NG W F, LIOU M S. Preconditioned conjugate gradient methods for the navier-stokes equations[J]. Journal of Computational Physics, 1994, 110(1): 68-81. doi: 10.1006/jcph.1994.1006
    [29] LUO H, BAUM J D, LÖHNER R. A fast, matrix-free implicit method for compressible flows on unstructured grids[J]. Journal of Computational Physics, 1998, 146(2): 664-690. doi: 10.1006/jcph.1998.6076
    [30] HELLER V, HAGER W H. Impulse product parameter in landslide generated impulse waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2010, 136(3): 145-155. doi: 10.1061/(ASCE)WW.1943-5460.0000037
    [31] 周桂云, 李同春, 钱七虎. 水库滑坡涌浪传播有限元数值模拟[J]. 岩土力学, 2013, 34(4): 1197-1201.

    ZHOU G Y, LI T C, QIAN Q H. Finite element numerical simulation of water waves due to reservoir landslides[J]. Rock and Soil Mechanics, 2013, 34(4): 1197-1201. (in Chinese with English abstract)
    [32] 刘艺梁, 陈健翔, 高晨曦, 等. 基于滑面分区段力学模型的高速滑坡运动过程能量转化研究[J]. 地质科技通报, 2022, 41(2): 139-146. doi: 10.19509/j.cnki.dzkq.2022.0061

    LIU Y L, CHEN J X, GAO C X, et al. Energy conversion of the high-speed landslide movement process based on a sliding surface partition mechanical model[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 139-146. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0061
    [33] 马鑫磊, 任光明, 夏敏. 滑坡涌浪预测评价方法综述[J]. 水利水电科技进展, 2015, 35(3): 89-98.

    MA X L, REN G M, XIA M. Review on the forecast evaluation methods of landslide surge[J]. Advances in Science and Technology of Water Resources, 2015, 35(3): 89-98. (in Chinese with English abstract)
    [34] 李稳哲, 岳高伟, 王辉, 等. 高速滑坡涌浪动力学机理研究[J]. 自然灾害学报, 2013, 22(5): 127-133.

    LI W Z, YUE G W, WANG H, et al. Dynamic mechanism of high speed landslide surge[J]. Journal of Natural Disasters, 2013, 22(5): 127-133. (in Chinese with English abstract)
    [35] TANG G Q, LU L, TENG Y F, et al. Impulse waves generated by subaerial landslides of combined block mass and granular material[J]. Coastal Engineering, 2018, 141: 68-85.
    [36] SERRANO-PACHECO A, MURILLO J, GARCÍA-NAVARRO P. A finite volume method for the simulation of the waves generated by landslides[J]. Journal of Hydrology, 2009, 373(3/4): 273-289.
    [37] 刘艺梁. 三峡库区库岸滑坡涌浪灾害研究[D]. 武汉: 中国地质大学(武汉), 2014.

    LIU Y L. Research on landslide-induced surge in Three Gorges Reservoir area[D]. Wuhan: China University of Geosciences(Wuhan), 2014. (in Chinese with English abstract)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  141
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 录用日期:  2024-07-01
  • 修回日期:  2024-06-06

目录

    /

    返回文章
    返回