留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水文地球化学方法在地热资源勘查中的应用: 以湖北省应城市为例

卫兴 师红杰 陈松 尚建波 刘明亮

卫兴, 师红杰, 陈松, 尚建波, 刘明亮. 水文地球化学方法在地热资源勘查中的应用: 以湖北省应城市为例[J]. 地质科技通报, 2024, 43(3): 68-80. doi: 10.19509/j.cnki.dzkq.tb20230606
引用本文: 卫兴, 师红杰, 陈松, 尚建波, 刘明亮. 水文地球化学方法在地热资源勘查中的应用: 以湖北省应城市为例[J]. 地质科技通报, 2024, 43(3): 68-80. doi: 10.19509/j.cnki.dzkq.tb20230606
WEI Xing, SHI Hongjie, CHEN Song, SHANG Jianbo, LIU Mingliang. Application of hydrogeochemical methods in geothermal resource exploration: A case study of Yingcheng City, Hubei Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 68-80. doi: 10.19509/j.cnki.dzkq.tb20230606
Citation: WEI Xing, SHI Hongjie, CHEN Song, SHANG Jianbo, LIU Mingliang. Application of hydrogeochemical methods in geothermal resource exploration: A case study of Yingcheng City, Hubei Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 68-80. doi: 10.19509/j.cnki.dzkq.tb20230606

水文地球化学方法在地热资源勘查中的应用: 以湖北省应城市为例

doi: 10.19509/j.cnki.dzkq.tb20230606
基金项目: 

国家自然科学基金项目 41902257

地热资源勘查与开发利用山西省重点实验室开放基金项目 SX202205

宁夏回族自治区重点研发计划项目 2022BEG03060

自然资源部深部地热资源重点实验室开放基金项目 KLDGR2022G01

详细信息
    作者简介:

    卫兴, E-mail: yangtzeweixing@163.com

    通讯作者:

    陈松, E-mail: ChenSong231028@163.com

  • 中图分类号: P314.3;TK521

Application of hydrogeochemical methods in geothermal resource exploration: A case study of Yingcheng City, Hubei Province

More Information
  • 摘要:

    地热流体水文地球化学研究在指示地热资源的形成机制、赋存环境以及预测地热资源有利勘查区等方面具有广泛应用。为了探究湖北省应城市地热系统的热源以及成因机制, 并对其地热异常区进行圈定。基于研究区内地热水与浅层地下冷水的水化学及同位素特征, 探讨了地热流体中主要组分的地球化学起源, 评估了地热流体的热储温度。结合区内浅层地下冷水的温度与水化学数据, 对地热异常区进行了圈定。研究结果表明, 地热水水化学类型主要为SO4-Ca型, 地热系统主要的热储围岩为海相碳酸盐岩, 通过地热温标计算热储温度约112.2 ℃。大气降水入渗和碳酸盐岩热储层中的水-岩相互作用是地热水中化学组分的主要来源。地热水的水化学和氢氧同位素特征指示地热水的补给来源为研究区西部山区的大气降水, 大气降水由补给区入渗后向东南盆地中心不断运移, 循环深度为3 436.7~5 030.2 m。通过与典型岩浆热源型地热系统的对比以及岩石样品中放射性元素的数据结果, 得出应城地热系统是由地温梯度正常加热而形成的。结合区内浅层地下冷水的温度与水化学数据, 最终圈定地热异常区位于应城市区西南陈河镇以北地区, 但仍需考虑井深、人为污染等客观限制因素对圈定结果的影响。

     

  • 图 1  研究区地质简图及采样点分布图(a)和地质剖面示意图(b)

    Figure 1.  Simplified geological map and sampling locations (a) and geological profile (b) in the study area

    图 2  研究区水样Piper三线图

    Figure 2.  Piper plot of water samples in the study area

    图 3  研究区水样微量组分箱线图

    Figure 3.  Box plot of microcomponents of water samples in the study area

    图 4  研究区地热水c(HCO3-+2SO42-)与c(Ca2++Mg2+)关系图

    Figure 4.  Plots of (HCO3-+2SO42-) concentration and (Ca2++Mg2+) concentration in geothermal water in the study area

    图 5  应城与羊八井地热水样Na-K-Mg三角图(a)和微量元素柱状图(b)(羊八井数据引自文献[33-34])

    Figure 5.  Triangular diagram of Na-K-Mg (a) and trace element histogram (b) of geothermal water samples in Yingcheng and Yangbajing

    图 6  研究区水样δD-δ18O关系图

    Figure 6.  δD-δ18O plot of water samples in the study area

    图 7  应城地热系统形成机制的概念模型[21]

    Figure 7.  Conceptual model of the formation mechanism of the Yingcheng geothermal system

    图 8  研究区井深40 m(a), 50 m(b), 60 m(c), 70 m(d)地温等值线图

    Figure 8.  Geothermal temperature contour at depths of 40 m (a), 50 m (b), 60 m (c), and 70 m (d) in the study area

    图 9  研究区地下水中ρ(B)(a),ρ(Sr)(b),ρ(Li)(c)以及综合异常质量浓度(d)等值线图

    Figure 9.  Contour maps of B (a), Sr (b), Li (c) concentrations, and comprehensive anomaly concentration (d) in groundwater in the study area

    表  1  研究区地下水样品水化学特征

    Table  1.   Hydrochemical characteristics of groundwater samples in the study area

    表  2  研究区岩石样品的铀、钍、钾质量分数以及放射性生热率

    Table  2.   U, Th, K compositions and the radiogenic heating rate of granite samples in the study area

    样品编号 岩石类型 w(K)/% w(Th)/10-6 w(U)/10-6 生热率A/(μW·m-3)
    R01 花岗岩 1.03 0.59 0.21 0.19
    下载: 导出CSV

    表  3  研究区地热水热储温度及循环深度

    Table  3.   Reservoir temperatures and circulation depths of geothermal water in the study area

    样品编号 石英温标/℃ 玉髓温标/℃ Na-K温标/℃ K-Mg温标/℃ 循环深度/m
    YC16 130.2 99.7 383.2 106.0 4 005.7
    SK2 119.2 88.0 231.8 58.3 3 436.7
    SK3 125.9 95.1 245.2 58.4 3 782.3
    1号孔 147.5 118.3 353.1 102.4 4 913.4
    2号孔 149.7 120.7 322.4 100.5 5 030.2
    9号-1 139.6 109.9 369.6 100.8 4 500.9
    9号-2 147.3 118.1 360.0 102.9 4 904.9
    11号-1 144.4 115.0 363.4 100.4 4 753.1
    11号-2 143.4 113.9 363.8 100.4 4 699.6
    2# 148.9 119.9 346.9 101.2 4 988.9
    58# 149.7 120.7 335.2 101.5 5 030.2
    八角池 149.7 120.7 339.7 101.5 5 030.2
    三池 149.7 120.7 345.1 100.2 5 030.2
    一池 139.6 109.9 345.3 101.5 4 500.9
    下载: 导出CSV
  • [1] DUCHANE D V. Geothermal energy from hot dry rock: A renew able energy technology moving towards practical implementation[J]. Renewable Energy, 1996, 9(1/4): 1246-1249.
    [2] LUND J W, BOYD T L. Direct utilization of geothermal energy 2015 worldwide review[J]. Geothermics, 2016, 60: 66-93. doi: 10.1016/j.geothermics.2015.11.004
    [3] 马伟斌, 龚宇烈, 赵黛青, 等. 我国地热能开发利用现状与发展[J]. 中国科学院院刊, 2016, 31(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201602008.htm

    MA W B, GONG Y L, ZHAO D Q, et al. Geothermal energy exploitation, utilization, and its development trend in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(2): 199-207. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201602008.htm
    [4] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm

    WANG G L, ZHANG W, LIANG J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-450. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm
    [5] 自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告(2018)[M]. 北京: 中国石化出版社, 2018.

    China Geological Survey of Ministry of Natural Resources, Department of New and Renewable Energy of National Energy Administration, Institutes of Science and Development of Chinese Academy of Sciences, et al. China geothermal energy development report (2018)[M]. Beijing: China Petrochemical Press, 2018. (in Chinese)
    [6] 汪集暘, 庞忠和, 孔彦龙, 等. 我国地热清洁取暖产业现状与展望[J]. 科技促进发展, 2020, 16(增刊1): 294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-KJCJ2020Z1010.htm

    WANG J Y, PANG Z H, KONG Y L, et al. Status and prospects of geothermal clean heating industry in China[J]. Science & Technology for Development, 2020, 16(S1): 294-298. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KJCJ2020Z1010.htm
    [7] ASTA M P, GIMENO M J, AUQUÉ L F, et al. Hydrochemistry and geothermometrical modeling of low-temperature Panticosa geothermal system (Spain)[J]. Journal of Volcanology and Geothermal Research, 2012, 235/236: 84-95. doi: 10.1016/j.jvolgeores.2012.05.007
    [8] ZHANG W, WANG G L, XING L X, et al. Geochemical response of deep geothermal processes in the Litang region, western Sichuan[J]. Energy Exploration & Exploitation, 2019, 37(2): 626-645.
    [9] 尚建波, 卫兴, 曹园园, 等. 不同类型地热水硼的地球化学特征及对地热系统成因机制的指示[J]. 地质科技通报, 2024, 43(1): 288-297. doi: 10.19509/j.cnki.dzkq.tb20230156

    SHANG J B, WEI X, CAO Y Y, et al., Boron geochemical characteristics in different types of geothermal water and its indications for the genesis mechanism of geothermal systems[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 288-297. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230156
    [10] 余浩文, 刘昭, 荣峰, 等. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318

    YU H W, LIU Z, RONG F, et al. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34-44. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0318
    [11] ÁRMANNSSON H. The fluid geochemistry of Icelandic high temperature geothermal areas[J]. Applied Geochemistry, 2016, 66: 14-64. doi: 10.1016/j.apgeochem.2015.10.008
    [12] LU L H, PANG Z H, KONG Y L, et al. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan geothermal system near Nanjing, China: Implications for sustainable development[J]. Hydrogeology Journal, 2018, 26(5): 1705-1719. doi: 10.1007/s10040-018-1721-6
    [13] 郭清海. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 2020, 94(12): 3544-3554. doi: 10.3969/j.issn.0001-5717.2020.12.002

    GUO Q H. Magma-heated geothermal systems and hydrogeochemical evidence of their occurrence[J]. Acta Geologica Sinica, 2020, 94(12): 3544-3554. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.12.002
    [14] 刘明亮, 何曈, 吴启帆, 等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6): 2221-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006032.htm

    LIU M L, HE T, WU Q F, et al. Hydrogeochemistry of geothermal waters from Xiong'an New Area and its indicating significance[J]. Earth Science, 2020, 45(6): 2221-2231. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006032.htm
    [15] 张梦昭, 郭清海, 刘明亮, 等. 山西忻州盆地地热水地球化学特征及其成因机制[J]. 地球科学, 2023, 48(3): 973-987. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202303010.htm

    ZHANG M Z, GUO Q H, LIU M L, et al. Geochemical characteristics and formation mechanisms of the geothermal waters in the Xinzhou Basin, Shanxi Province[J]. Earth Science, 2023, 48(3): 973-987. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202303010.htm
    [16] CHANDRAJITH R, BARTH J A C, SUBASINGHE N D, et al. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients[J]. Journal of Hydrology, 2013, 476: 360-369. doi: 10.1016/j.jhydrol.2012.11.004
    [17] MARQUES J M, GRAÇA H, EGGENKAMP H G M, et al. Isotopic and hydrochemical data as indicators of recharge areas, flow paths and water-rock interaction in the Caldas da Rainha-Quinta das Janelas thermomineral carbonate rock aquifer (Central Portugal)[J]. Journal of Hydrology, 2013, 476: 302-313. doi: 10.1016/j.jhydrol.2012.10.047
    [18] 朱喜, 王贵玲, 马峰, 等. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义[J]. 地球科学, 2021, 46(7): 2594-2608. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107025.htm

    ZHU X, WANG G L, MA F, et al. Hydrogeochemistry of geothermal waters from Taihang Mountain-Xiong'an New Area and its indicating significance[J]. Earth Science, 2021, 46(7): 2594-2608. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107025.htm
    [19] 张薇, 王贵玲, 赵佳怡, 等. 四川西部中高温地热流体地球化学特征及其地质意义[J]. 现代地质, 2021, 35(1): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101021.htm

    ZHANG W, WANG G L, ZHAO J Y, et al. Geochemical characteristics of medium-high temperature geothermal fluids in West Sichuan and their geological implications[J]. Geoscience, 2021, 35(1): 188-198. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101021.htm
    [20] 王思琪. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]. 北京: 中国地质大学(北京), 2017.

    WANG S Q. Hydrogeochemical processes and genesis machenism of high-temperature geothermal system in Gudui, Tibet[D]. Beijing: China University of Geosciences (Beijing), 2017. (in Chinese with English abstract)
    [21] 湖北省地质局第六地质大队. 湖北省应城市汤池地热资源评价报告[R]. 湖北应城: 湖北省地质局第六地质大队, 2009.

    Six Geological Team of Hubei Geological Bureau. Evaluation report of geothermal resources in Tangchi, Yingcheng City, Hubei Province, China[R]. Yingcheng Hubei: Six Geological Team of Hubei Geological Bureau, 2009. (in Chinese)
    [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硅酸盐岩石化学分析方法第28部分: 16个主次成分量测定: GB/T 14506.28-2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Methods for chemical analysis of silicate rocks-Part 28: Determination of 16 major and minor elements content: GB/T 14506.28-2010[S]. Beijing: Standards Press of China, 2010.
    [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 硅酸盐岩石化学分析方法第30部分: 16个主次成分量测定: GB/T 14506.30-2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Methods for chemical analysis of silicate rocks-Part 30: Determination of 16 major and minor elements content: GB/T 14506.30-2010[S]. Beijing: Standards Press of China, 2010.
    [24] HUDSON-EDWARDS K A, ARCHER J. Geochemistry of As-, F- and B-bearing waters in and around San Antonio de los Cobres, Argentina, and implications for drinking and irrigation water quality[J]. Journal of Geochemical Exploration, 2012, 112: 276-284. doi: 10.1016/j.gexplo.2011.09.007
    [25] KIRK NORDSTROM D, BLAINE MCCLESKEY R, BALL J W. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: Ⅳ. Acid-sulfate waters[J]. Applied Geochemistry, 2009, 24(2): 191-207. doi: 10.1016/j.apgeochem.2008.11.019
    [26] ARAOKA D, KAWAHATA H, TAKAGI T, et al. Lithium and strontium isotopic systematics in playas in Nevada, USA: Constraints on the origin of lithium[J]. Mineralium Deposita, 2014, 49(3): 371-379. doi: 10.1007/s00126-013-0495-y
    [27] 郑绵平, 向军, 魏新俊, 等. 青藏高原盐湖[M]. 北京: 北京科学技术出版社, 1989.

    ZHENG M P, XIANG J, WEI X J, et al. Qinghai-TibetanPlateau salt lake[M]. Beijing: Beijing Science & Technology Press, 1989. (in Chinese)
    [28] 李洁祥, 郭清海, 余正艳. 高温地热系统中黏土矿物形成对Na-K和K-Mg地球化学温标准确性的影响[J]. 地球科学, 2017, 42(1): 142-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701012.htm

    LI J X, GUO Q H, YU Z Y. Impact of clay mineral formation in high-temperature geothermal system on accuracy of Na-K and K-Mg geothermometers[J]. Earth Science, 2017, 42(1): 142-154. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201701012.htm
    [29] ARNÓRSSON S, GUNNLAUGSSON E, SVAVARSSON H. The chemistry of geothermal waters in Iceland: Ⅲ. Chemical geothermometry in geothermal investigations[J]. Geochimica et Cosmochimica Acta, 1983, 47(3): 567-577. doi: 10.1016/0016-7037(83)90278-8
    [30] FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1976, 5(1/4): 41-50.
    [31] FOURNIER R O, TRUESDELL A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275. doi: 10.1016/0016-7037(73)90060-4
    [32] GIGGENBACH W F. Geothermal solute equilibria, Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3
    [33] GUO Q H, WANG Y X, LIU W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2007, 166(3/4): 255-268.
    [34] YUAN J F, GUO Q H, WANG Y X. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China[J]. Journal of Geochemical Exploration, 2014, 140: 11-22. doi: 10.1016/j.gexplo.2014.01.006
    [35] LIU M L, GUO Q H, ZHANG X B, et al. Geochemistry of geothermal waters from the Gonghe region, northwestern China: Implications for identification of the heat source[J]. Environmental Earth Sciences, 2016, 75(8): 682. doi: 10.1007/s12665-016-5508-6
    [36] 王大纯, 张人权, 史毅红, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995.

    WANG D C, ZHANG R Q, SHI Y H, et al. Foundations of hydrogeology[M]. Beijing: Geological Publishing House, 1995. (in Chinese)
    [37] 邓志民, 张翔, 潘国艳. 武汉市大气降水的氢氧同位素变化特征[J]. 长江科学院院报, 2016, 33(7): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201607003.htm

    DENG Z M, ZHANG X, PAN G Y. Variations of hydrogen and oxygen isotopes in meteoric precipitation in Wuhan, China[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(7): 12-17. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201607003.htm
    [38] 袁建飞. 广东沿海地热系统水文地球化学研究[D]. 武汉: 中国地质大学(武汉), 2013.

    YUAN J F. Hydrogeochemistry of the geothermal systems in coastal areas of Guangdong Province, South China[D]. Wuhan: China University of Geosciences (Wuhan), 2013. (in Chinese with English abstract)
    [39] GUO Q H, HE T, WU Q F, et al. Constraints of major ions and arsenic on the geological genesis of geothermal water: Insight from a comparison between Xiong'an and Yangbajain, two hydrothermal systems in China[J]. Applied Geochemistry, 2020, 117: 104589. doi: 10.1016/j.apgeochem.2020.104589
    [40] RYBACH L. Radioactive heat production in rocks and its relation to other petrophysical parameters[J]. Pure and Applied Geophysics, 1976, 114(2): 309-317. doi: 10.1007/BF00878955
    [41] 汪名鹏, 杨俊松, 刘彦华. 地温测量在地热勘查中的应用[J]. 物探与化探, 2022, 46(4): 838-844. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202204007.htm

    WANG M P, YANG J S, LIU Y H. Application of geothermal measurement in the geothermal exploration[J]. Geophysical and Geochemical Exploration, 2022, 46(4): 838-844. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202204007.htm
    [42] 雷晓东, 胡圣标, 李娟, 等. 北京平原区西北部大地热流与深部地温分布特征[J]. 地球物理学报, 2018, 61(9): 3735-3748. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809021.htm

    LEI X D, HU S B, LI J, et al. Characteristics of heat flow and geothermal distribution in the northwest Beijing Plain[J]. Chinese Journal of Geophysics, 2018, 61(9): 3735-3748. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809021.htm
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  24
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 录用日期:  2024-02-02
  • 修回日期:  2024-01-15

目录

    /

    返回文章
    返回