Characterization of the present-day lithospheric thermal structure and main controlling factors in Songliao Basin
-
摘要:
松辽盆地的热结构分析多局限在南北分区的沉积层尺度,缺乏岩石圈尺度的全盆地热结构刻画,制约了以地球动力学为背景的成因分析。综合利用已发表的地表热流、地温梯度以及热物性参数,补充了姚家组、青山口组和泉头组的热物性测试分析,并增加了多个地温场数据,全面刻画了整个松辽盆地的地温场特征,剖析了现今岩石圈尺度的热结构特征。结果表明,松辽盆地地温梯度范围是21.10~63.45℃/km,平均值是41.41 ±7.97℃/km,高于全球平均的地温梯度值30℃/km;地表热流值的分布范围是30.38~106.58 mW/m2,平均值是71.85 ± 12.87 mW/m2,也高于全球平均的地表热流值60 mW/m2,是一个典型的“热”盆。受太平洋板块俯冲作用、拆沉作用和热侵蚀作用的影响,热岩石圈明显减薄至现今的58.59 km。由减薄地壳中放射性元素生热产生的热流仅为16.40 mW/m2,占地表热流的22.83%;而受滞留板片脱水作用的影响,部分熔融的地幔热物质上涌,地幔热流贡献高达55.45 mW/m2,占地表热流的77.17%。因此,受控于岩石圈减薄作用和地幔上涌作用,松辽盆地具有“热”盆属性和“热幔冷壳”的岩石圈热结构特征。
Abstract:Objective Thermal structure analyses in the Songliao Basin are mostly confined to the sedimentary scale in the north-south zoning, and the lack of basin-wide thermal structure portrayal at the lithospheric scale constrains the genesis analysis in a geodynamic background.
Methods Based on the published parameters of surface heat flow, geothermal gradient and thermophysical properties, this paper supplements the thermophysical properties of Yaojia Formation, Qingshankou Formation and Quantou Formation, and adds several geothermal field data to comprehensively characterize the geothermal field of the whole Songliao Basin, and analyze the characteristics of the present-day lithospheric thermal structure.
Results The results show that the geothermal gradient in Songliao Basin ranges from 21.10 to 63.45℃/km, with an average value of 41.41℃/km, which is higher than the global average value of 30℃/km; the distribution of surface heat flow values ranges from 30.38 to 106.58 mW/m2, with an average value of 71.85 mW/m2, which is higher than the global average value of 60 mW/m2 and belongs to a typical "hot" basin. Under the influence of the Pacific plate subduction, the delamination and thermal erosion made the thinned thickness of the thermal lithosphere of 58.59 km. The heat flow contribution by radioactive elements in the thinned crust is only 16.40 mW/m2, accounting for 22.83% of the surface heat flow; and under the influence of the dehydration of the stagnant plate, part of the molten mantle heat material is upwelled, the mantle heat flow contributes as high as 55.45 mW/m2, accounting for 77.17% of the surface heat flow.
Conclusion Therefore, controlled by lithospheric thinning and mantle upwelling, the Songliao Basin has "hot" basin properties and "hot mantle and cold crust" lithospheric thermal structure characteristics.
-
图 1 松辽盆地构造单元及测温井分布图[15]
Figure 1. Tectonic units and temperature measuring wells in the Songliao Basin
图 2 松辽盆地中部构造剖面图[18](部分调整)
Figure 2. Tectonic profile in the central part of Songliao Basin
表 1 松辽盆地热导率(K)和放射性生热率(A)
Table 1. Thermal conductivity (K) and radiative heating rate (A) in Songliao Basin
岩石圈
分层K A 平均值W·(m−1·K−1) 范围W·(m−1·K−1) 样品数n 数据来源 平均值/(μW·m−3) 范围/(μW·m−3) 样品数n 数据来源 沉积
盖层K2n 1.44 ± 0.20 0.89~2.32 47 文献[7] 1.67 ± 0.27 1.36~1.96 4 文献[7] K2y 1.79 ± 0.24 — 38 文献[29],本次研究 1.09 ± 0.17 0.43~1.30 35 本次研究 K2qn 2.10 ± 0.28 1.30~2.78 69 1.15 ± 0.20 0.63~2.19 64 K1-2q 1.96 ± 0.38 1.17~2.84 63 文献[7],本次研究 1.09 ± 0.13 0.50~1.26 45 K1d 2.54 ± 0.25 1.85~3.12 22 文献[7] 1.66 ± 1.34 0.86~5.30 11 文献[7] K1yc 2.59 ± 0.26 1.92~3.15 34 0.94 ± 0.28 0.30~1.40 34 K1sh 2.61 ± 0.35 1.91~4.48 164 0.77 ± 0.36 0.32~1.91 52 J3h 2.93 ± 0.32 2.03~3.78 109 0.81 ± 0.34 0.23~1.69 31 C-P 3.01 ± 0.43 2.22~4.39 107 0.82 ± 0.24 0.33~1.31 38 上地壳 2.85 — — 文献[23] 1.50(-Z/D) — — 文献[25] 中地壳 2.60 — — 0.46 — — 文献[23] 下地壳 2.00 — — 0.20 — — 岩石圈地幔 3.20 — — 0.03 — — 总样品数 653 314 注:表中数据K综合了测试数据和前人已有研究数据,3.1节正文仅为本次实验测试数据两者不一致;K2n. 嫩江组;K2y. 姚家组;K2qn. 青山口组;K1-2q. 泉头组;K1d. 登娄库组;K1yc. 营城组;K1sh. 沙河子组;J3h. 火石岭组;C-P. 石炭−二叠系(基层);下同 -
[1] 王超,渠淼,喻慧阳. 地球物质科学的基本原理:固体地球科学中的热力学研究历史与展望[J]. 地质科技通报,2024,43(4):191-204.WANG C,QU M,YU H Y. Principle of Earth materials:A historical perspective of thermodynamics of the Earth[J]. Bulletin of Geological Science and Technology,2024,43(4):191-204. (in Chinese with English abstract [2] 段和肖,刘彦广,王贵玲,等. 沧县隆起中部大地热流及岩石圈热结构特征:以献县地热田为例[J]. 地球科学,2023,48(3):988-1001.DUAN H X,LIU Y G,WANG G L,et al. Characteristics of the terrestrial heat flow and lithospheric thermal structure in central Cangxian uplift:A case study of Xianxian geothermal field[J]. Earth Science,2023,48(3):988-1001. (in Chinese with English abstract [3] 黄方,何丽娟,吴庆举. 鄂尔多斯盆地深部热结构特征及其对华北克拉通破坏的启示[J]. 地球物理学报,2015,58(10):3671-3686. doi: 10.6038/cjg20151020HUANG F,HE L J,WU Q J. Lithospheric thermal structure of the Ordos Basin and its implications to destruction of the North China Craton[J]. Chinese Journal of Geophysics,2015,58(10):3671-3686. (in Chinese with English abstract doi: 10.6038/cjg20151020 [4] MCKENZIE D,JACKSON J,PRIESTLEY K. Thermal structure of oceanic and continental lithosphere[J]. Earth and Planetary Science Letters,2005,233(3/4):337-349. [5] EMMERSON B,MCKENZIE D. Thermal structure and seismicity of subducting lithosphere[J]. Physics of the Earth and Planetary Interiors,2007,163(1/4):191-208. [6] LIMBERGER J,VAN WEES J D,TESAURO M,et al. Refining the thermal structure of the European lithosphere by inversion of subsurface temperature data[J]. Global and Planetary Change,2018,171:18-47. doi: 10.1016/j.gloplacha.2018.07.009 [7] 单斌,周万里. 岩石圈结构成像方法的进展与展望[J]. 地质科技通报,2022,41(5):112-121.SHAN B,ZHOU W L. Methods and prospects for lithospheric structure imaging[J]. Bulletin of Geological Science and Technology,2022,41(5):112-121. (in Chinese with English abstract [8] 袁晶,陈艳,唐春花,等. 遥感地热GIS预测方法研究:以江西宁都地区为例[J]. 华东地质,2023,44(4):424-438.YUAN J,CHEN Y,TANG C H,et al. Remote sensing geothermal GIS prediction method:A case study in Ningdu City,Jiangxi Province[J]. East China Geology,2023,44(4):424-438. (in Chinese with English abstract [9] 徐明,赵平,朱传庆,等. 江汉盆地钻井地温测量和大地热流分布[J]. 地质科学,2010,45(1):317-323. doi: 10.3969/j.issn.0563-5020.2010.01.026XU M,ZHAO P,ZHU C Q,et al. Borehole temperature logging and terrestrial heat flow distribution in Jianghan Basin[J]. Chinese Journal of Geology(Scientia Geologica Sinica),2010,45(1):317-323. (in Chinese with English abstract doi: 10.3969/j.issn.0563-5020.2010.01.026 [10] ZUO Y H,JIANG S,WU S H,et al. Terrestrial heat flow and lithospheric thermal structure in the Chagan Depression of the Yingen-Ejinaqi Basin,north central China[J]. Basin Research,2020,32(6):1328-1346. doi: 10.1111/bre.12430 [11] LIAO Y Z,LIU Y G,LIU F,et al. Lithospheric thermal structure in Jinggangshan City:Implications for high geothermal background[J]. Frontiers in Earth Science,2022,10:854232. doi: 10.3389/feart.2022.854232 [12] 卫兴,师红杰,陈松,等. 水文地球化学方法在地热资源勘查中的应用:以湖北省应城市为例[J]. 地质科技通报,2024,43(3):68-80.WEI X,SHI H J,CHEN S,et al. Application of hydrogeochemical methods in geothermal resource exploration:A case study of Yingcheng City,Hubei Province[J]. Bulletin of Geological Science and Technology,2024,43(3):68-80. (in Chinese with English abstract [13] 邹才能,贾承造,赵文智,等. 松辽盆地南部岩性−地层油气藏成藏动力和分布规律[J]. 石油勘探与开发,2005,32(4):125-130. doi: 10.3321/j.issn:1000-0747.2005.04.021ZOU C N,JIA C Z,ZHAO W Z,et al. Accumulation dynamics and distribution of lithostratigraphic reservoirs in South Songliao Basin[J]. Petroleum Exploration and Development,2005,32(4):125-130. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0747.2005.04.021 [14] 何文渊,柳波,张金友,等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学,2023,48(1):49-62.HE W Y,LIU B,ZHANG J Y,et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science,2023,48(1):49-62. (in Chinese with English abstract [15] 高航,王璞珺,高有峰,等. 松辽盆地南部上、下白垩统界线研究:以松辽盆地国际大陆科学钻探松科3井为例[J]. 地学前缘,2023,30(3):425-440.GAO H,WANG P J,GAO Y F,et al. The Upper-Lower Cretaceous boundary in the southern Songliao Basin:A case study of ICDP borehole SK-3[J]. Earth Science Frontiers,2023,30(3):425-440. (in Chinese with English abstract [16] MA J C,TIAN Y,LIU C,et al. P-wave tomography of Northeast Asia:Constraints on the western Pacific plate subduction and mantle dynamics[J]. Physics of the Earth and Planetary Interiors,2018,274:105-126. doi: 10.1016/j.pepi.2017.11.003 [17] 刘晨璞,钟鑫,朱焕来. 松辽盆地北部中低地温场形成机制探讨[J]. 地质调查与研究,2016,39(4):316-320.LIU C P,ZHONG X,ZHU H L. Research on the formation mechanism for the medium-low geothermal field in the north of Songliao Basin[J]. Geological Survey and Research,2016,39(4):316-320. (in Chinese with English abstract [18] FENG Z Q,JIA C Z,XIE X N,et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin,Northeast China[J]. Basin Research,2010,22(1):79-95. doi: 10.1111/j.1365-2117.2009.00445.x [19] LIU X,ZHAO D P,LI S Z,et al. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications[J]. Earth and Planetary Science Letters,2017,464:166-174. doi: 10.1016/j.jpgl.2017.02.024 [20] 唐杰,许文良,王枫,等. 古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代−古近纪岩浆记录[J]. 中国科学:地球科学,2018,48(5):549-583.TANG J,XU W L,WANG F,et al. Subduction history of the Paleo-Pacific slab beneath Eurasian continent:Mesozoic-Paleogene magmatic records in Northeast Asia[J]. Scientia Sinica(Terrae),2018,48(5):549-583. (in Chinese with English abstract [21] LI Z Q,CHEN J L,ZOU H,et al. Mesozoic-Cenozoic tectonic evolution and dynamics of the Songliao Basin,NE Asia:Implications for the closure of the Paleo-Asian Ocean and Mongol-Okhotsk Ocean and subduction of the Paleo-Pacific Ocean[J]. Earth-Science Reviews,2021,218:103471. doi: 10.1016/j.earscirev.2020.103471 [22] 许文良,王旖旎,王枫,等. 西太平洋俯冲带的演变:来自东北亚陆缘增生杂岩的制约[J]. 地质论评,2022,68(1):1-17.XU W L,WANG Y N,WANG F,et al. Evolution of western Pacific subduction zones:Constraints from accretionary complexes in NE Asian continental margin[J]. Geological Review,2022,68(1):1-17. (in Chinese with English abstract [23] FURLONG K P,CHAPMAN D S. Heat flow,heat generation,and the thermal state of the lithosphere[J]. Annual Review of Earth and Planetary Sciences,2013,41:385-410. doi: 10.1146/annurev.earth.031208.100051 [24] VILÀ M,FERNÁNDEZ M,JIMÉNEZ-MUNT I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling[J]. Tectonophysics,2010,490(3/4):152-164. [25] LACHENBRUCH A H. Crustal temperature and heat production:Implications of the linear heat-flow relation[J]. Journal of Geophysical Research,1970,75(17):3291-3300. doi: 10.1029/JB075i017p03291 [26] HAENEL R,RYBACH L,STEGENA L,et al. Handbook of terrestrial heat-flow density determination:With guidelines and recommendations of the International Heat Flow Commission[M]. Dordrecht,Boston:Kluwer Academic Publishers,1988. [27] 饶松,胡圣标,朱传庆,等. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报,2013,56(8):2760-2770. doi: 10.6038/cjg20130824RAO S,HU S B,ZHU C Q,et al. The characteristics of heat flow and lithospheric thermal structure in Junggar Basin,Northwest China[J]. Chinese Journal of Geophysics,2013,56(8):2760-2770. (in Chinese with English abstract doi: 10.6038/cjg20130824 [28] QIU N S,XU W,ZUO Y H,et al. Meso-Cenozoic thermal regime in the Bohai Bay Basin,eastern North China Craton[J]. International Geology Review,2015,57(3):271-289. doi: 10.1080/00206814.2014.1002818 [29] 吴乾蕃,谢毅真. 松辽盆地大地热流[J]. 地震地质,1985,7(2):59-64.WU Q F,XIE Y Z. Geothermal heat flow in the Songhuajiang-Liaoning Basin[J]. Seismology and Geology,1985,7(2):59-64. (in Chinese with English abstract [30] SAEMUNDSSON K,AXELSSON G,STEINGRÍMSSON B. Geothermal systems in global perspective[J]. Environmental Science,Geology,Engineering,2013:55169275. [31] JIANG G Z,HU S B,SHI Y Z,et al. Terrestrial heat flow of continental China:Updated dataset and tectonic implications[J]. Tectonophysics,2019,753:36-48. doi: 10.1016/j.tecto.2019.01.006 [32] 刘雨晨,柳波,朱焕来,等. 松辽盆地现今地温场分布特征及主控因素[J]. 地质学报,2023,97(8):2715-2727.LIU Y C,LIU B,ZHU H L,et al. The distribution characteristics and main controlling factors of present-day geothermal regime of the Songliao Basin[J]. Acta Geologica Sinica,2023,97(8):2715-2727. (in Chinese with English abstract [33] 付健,李思其,贾小江,等. 松辽盆地中央坳陷区中−新生代岩石圈厚度演化[J]. 地质科学,2023,58(3):798-809. doi: 10.12017/dzkx.2023.045FU J,LI S Q,JIA X J,et al. Mesozoic-Cenozoic lithospheric thickness evolution in the central depression of Songliao Basin[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2023,58(3):798-809. (in Chinese with English abstract doi: 10.12017/dzkx.2023.045 [34] 许文良,孙德有,尹秀英. 大兴安岭海西期造山带的演化:来自花岗质岩石的证据[J]. 长春科技大学学报,1999,29(4):319-323.XU W L,SUN D Y,YIN X Y. Evolution of Hercynian orogenic belt in Daxing’anling Mt:Evidence from granitic rocks[J]. Journal of Changchun University of Science and Technology,1999,29(4):319-323. (in Chinese with English abstract [35] 韩江涛,郭振宇,刘文玉,等. 松辽盆地岩石圈减薄的深部动力学过程[J]. 地球物理学报,2018,61(6):2265-2279. doi: 10.6038/cjg2018L0155HAN J T,GUO Z Y,LIU W Y,et al. Deep dynamic process of lithosphere thinning in Songliao Basin[J]. Chinese Journal of Geophysics,2018,61(6):2265-2279. (in Chinese with English abstract doi: 10.6038/cjg2018L0155 [36] 杨宝俊,张梅生,王璞珺,等. 论中国东部大型盆地区及邻区地质—地球物理复合尺度解析[J]. 地球物理学进展,2002,17(2):317-324. doi: 10.3969/j.issn.1004-2903.2002.02.019YANG B J,ZHANG M S,WANG P J,et al. Composite scale analysis of geology-geophysics in the major basins and surrounding areas in the eastern China[J]. Progress in Geophysics,2002,17(2):317-324. (in Chinese with English abstract doi: 10.3969/j.issn.1004-2903.2002.02.019 [37] SUN P,GUO P Y,NIU Y L. Eastern China continental lithosphere thinning is a consequence of paleo-Pacific plate subduction:A review and new perspectives[J]. Earth-Science Reviews,2021,218:103680. doi: 10.1016/j.earscirev.2021.103680 [38] GUO Z,WANG K,YANG Y J,et al. The origin and mantle dynamics of quaternary intraplate volcanism in Northeast China from joint inversion of surface wave and body wave[J]. Journal of Geophysical Research (Solid Earth),2018,123(3):2410-2425. doi: 10.1002/2017JB014948 [39] 牛璞,韩江涛,曾昭发,等. 松辽盆地北部地热场深部控制因素研究:基于大地电磁探测的结果[J]. 地球物理学报,2021,64(11):4060-4074. doi: 10.6038/cjg2021O0453NIU P,HAN J T,ZENG Z F,et al. Deep controlling factors of the geothermal field in the northern Songliao Basin derived from magnetotelluric survey[J]. Chinese Journal of Geophysics,2021,64(11):4060-4074. (in Chinese with English abstract doi: 10.6038/cjg2021O0453 [40] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学,1993,4(增刊1):1-40.DAI J X. Characteristics of hydrocarbon isotopes in natural gas and identification of various types of natural gas[J]. Natural Gas Geoscience,1993,4(S1):1-40. (in Chinese with English abstract [41] WANG X F,LIU Q Y,LIU W H,et al. Accumulation mechanism of mantle-derived helium resources in petroliferous basins,eastern China[J]. Science China Earth Sciences,2022,65(12):2322-2334. doi: 10.1007/s11430-022-9977-8 [42] DAI D L,ZHAO R S,HU J,et al. The lithospheric thermal structure in the Songliao Basin inferred from thermal parameter analyses:Implications for the background of geothermal resources[J]. Natural Resources Research,2024,33(3):1103-1129. doi: 10.1007/s11053-023-10303-3 -