留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松辽盆地现今岩石圈热结构特征及主控因素

代登亮 王守志 边远 王鹏 刘宗堡 赵容生

代登亮,王守志,边远,等. 松辽盆地现今岩石圈热结构特征及主控因素[J]. 地质科技通报,2025,44(0):1-9 doi: 10.19509/j.cnki.dzkq.tb20230609
引用本文: 代登亮,王守志,边远,等. 松辽盆地现今岩石圈热结构特征及主控因素[J]. 地质科技通报,2025,44(0):1-9 doi: 10.19509/j.cnki.dzkq.tb20230609
DAI Dengliang,WANG Shouzhi,BIAN Yuan,et al. Characterization of the present-day lithospheric thermal structure and main controlling factors in Songliao Basin[J]. Bulletin of Geological Science and Technology,2025,44(0):1-9 doi: 10.19509/j.cnki.dzkq.tb20230609
Citation: DAI Dengliang,WANG Shouzhi,BIAN Yuan,et al. Characterization of the present-day lithospheric thermal structure and main controlling factors in Songliao Basin[J]. Bulletin of Geological Science and Technology,2025,44(0):1-9 doi: 10.19509/j.cnki.dzkq.tb20230609

松辽盆地现今岩石圈热结构特征及主控因素

doi: 10.19509/j.cnki.dzkq.tb20230609
基金项目: 国家自然科学基金青年项目(42002153);吉林省自然科学基金面上项目(20240101038JC);吉林省教育厅优秀青年项目(JJKH20240782KJ);吉林省自然科学基金项目(20220101183JC)
详细信息
    作者简介:

    代登亮:E-mail:847113043@qq.com

    通讯作者:

    E-mail:zhaors@jlu.edu.cn

Characterization of the present-day lithospheric thermal structure and main controlling factors in Songliao Basin

More Information
  • 摘要:

    松辽盆地的热结构分析多局限在南北分区的沉积层尺度,缺乏岩石圈尺度的全盆地热结构刻画,制约了以地球动力学为背景的成因分析。综合利用已发表的地表热流、地温梯度以及热物性参数,补充了姚家组、青山口组和泉头组的热物性测试分析,并增加了多个地温场数据,全面刻画了整个松辽盆地的地温场特征,剖析了现今岩石圈尺度的热结构特征。结果表明,松辽盆地地温梯度范围是21.10~63.45℃/km,平均值是41.41 ±7.97℃/km,高于全球平均的地温梯度值30℃/km;地表热流值的分布范围是30.38~106.58 mW/m2,平均值是71.85 ± 12.87 mW/m2,也高于全球平均的地表热流值60 mW/m2,是一个典型的“热”盆。受太平洋板块俯冲作用、拆沉作用和热侵蚀作用的影响,热岩石圈明显减薄至现今的58.59 km。由减薄地壳中放射性元素生热产生的热流仅为16.40 mW/m2,占地表热流的22.83%;而受滞留板片脱水作用的影响,部分熔融的地幔热物质上涌,地幔热流贡献高达55.45 mW/m2,占地表热流的77.17%。因此,受控于岩石圈减薄作用和地幔上涌作用,松辽盆地具有“热”盆属性和“热幔冷壳”的岩石圈热结构特征。

     

  • 图 1  松辽盆地构造单元及测温井分布图[15]

    Figure 1.  Tectonic units and temperature measuring wells in the Songliao Basin

    图 2  松辽盆地中部构造剖面图[18](部分调整)

    Figure 2.  Tectonic profile in the central part of Songliao Basin

    图 3  松辽盆地地温梯度TG图(a)和地表热流q0图(b)

    Figure 3.  TG map (a) and q0 map (b) of Songliao Basin

    图 4  松辽盆地岩石圈热结构模型图

    K2-Q. 上百垩统—第四系;K1. 下白垩统;J. 侏罗系

    Figure 4.  Model of lithospheric thermal structure of Songliao Basin

    图 5  松辽盆地热岩石圈厚度

    T1T2分别为热岩石圈底部温度的上限和下限;Z. 埋藏深度

    Figure 5.  Thermal lithospheric thickness of Songliao Basin

    图 6  松辽盆地岩石圈热结构成因模式示意图

    Figure 6.  Genetic model of lithospheric thermal structure in the Songliao Basin

    表  1  松辽盆地热导率(K)和放射性生热率(A)

    Table  1.   Thermal conductivity (K) and radiative heating rate (A) in Songliao Basin

    岩石圈
    分层
    K A
    平均值W·(m−1·K−1) 范围W·(m−1·K−1) 样品数n 数据来源 平均值/(μW·m−3) 范围/(μW·m−3) 样品数n 数据来源
    沉积
    盖层
    K2n 1.44 ± 0.20 0.89~2.32 47 文献[7] 1.67 ± 0.27 1.36~1.96 4 文献[7]
    K2y 1.79 ± 0.24 38 文献[29],本次研究 1.09 ± 0.17 0.43~1.30 35 本次研究
    K2qn 2.10 ± 0.28 1.30~2.78 69 1.15 ± 0.20 0.63~2.19 64
    K1-2q 1.96 ± 0.38 1.17~2.84 63 文献[7],本次研究 1.09 ± 0.13 0.50~1.26 45
    K1d 2.54 ± 0.25 1.85~3.12 22 文献[7] 1.66 ± 1.34 0.86~5.30 11 文献[7]
    K1yc 2.59 ± 0.26 1.92~3.15 34 0.94 ± 0.28 0.30~1.40 34
    K1sh 2.61 ± 0.35 1.91~4.48 164 0.77 ± 0.36 0.32~1.91 52
    J3h 2.93 ± 0.32 2.03~3.78 109 0.81 ± 0.34 0.23~1.69 31
    C-P 3.01 ± 0.43 2.22~4.39 107 0.82 ± 0.24 0.33~1.31 38
    上地壳 2.85 文献[23] 1.50(-Z/D) 文献[25]
    中地壳 2.60 0.46 文献[23]
    下地壳 2.00 0.20
    岩石圈地幔 3.20 0.03
    总样品数 653 314
    注:表中数据K综合了测试数据和前人已有研究数据,3.1节正文仅为本次实验测试数据两者不一致;K2n. 嫩江组;K2y. 姚家组;K2qn. 青山口组;K1-2q. 泉头组;K1d. 登娄库组;K1yc. 营城组;K1sh. 沙河子组;J3h. 火石岭组;C-P. 石炭−二叠系(基层);下同
    下载: 导出CSV
  • [1] 王超,渠淼,喻慧阳. 地球物质科学的基本原理:固体地球科学中的热力学研究历史与展望[J]. 地质科技通报,2024,43(4):191-204.

    WANG C,QU M,YU H Y. Principle of Earth materials:A historical perspective of thermodynamics of the Earth[J]. Bulletin of Geological Science and Technology,2024,43(4):191-204. (in Chinese with English abstract
    [2] 段和肖,刘彦广,王贵玲,等. 沧县隆起中部大地热流及岩石圈热结构特征:以献县地热田为例[J]. 地球科学,2023,48(3):988-1001.

    DUAN H X,LIU Y G,WANG G L,et al. Characteristics of the terrestrial heat flow and lithospheric thermal structure in central Cangxian uplift:A case study of Xianxian geothermal field[J]. Earth Science,2023,48(3):988-1001. (in Chinese with English abstract
    [3] 黄方,何丽娟,吴庆举. 鄂尔多斯盆地深部热结构特征及其对华北克拉通破坏的启示[J]. 地球物理学报,2015,58(10):3671-3686. doi: 10.6038/cjg20151020

    HUANG F,HE L J,WU Q J. Lithospheric thermal structure of the Ordos Basin and its implications to destruction of the North China Craton[J]. Chinese Journal of Geophysics,2015,58(10):3671-3686. (in Chinese with English abstract doi: 10.6038/cjg20151020
    [4] MCKENZIE D,JACKSON J,PRIESTLEY K. Thermal structure of oceanic and continental lithosphere[J]. Earth and Planetary Science Letters,2005,233(3/4):337-349.
    [5] EMMERSON B,MCKENZIE D. Thermal structure and seismicity of subducting lithosphere[J]. Physics of the Earth and Planetary Interiors,2007,163(1/4):191-208.
    [6] LIMBERGER J,VAN WEES J D,TESAURO M,et al. Refining the thermal structure of the European lithosphere by inversion of subsurface temperature data[J]. Global and Planetary Change,2018,171:18-47. doi: 10.1016/j.gloplacha.2018.07.009
    [7] 单斌,周万里. 岩石圈结构成像方法的进展与展望[J]. 地质科技通报,2022,41(5):112-121.

    SHAN B,ZHOU W L. Methods and prospects for lithospheric structure imaging[J]. Bulletin of Geological Science and Technology,2022,41(5):112-121. (in Chinese with English abstract
    [8] 袁晶,陈艳,唐春花,等. 遥感地热GIS预测方法研究:以江西宁都地区为例[J]. 华东地质,2023,44(4):424-438.

    YUAN J,CHEN Y,TANG C H,et al. Remote sensing geothermal GIS prediction method:A case study in Ningdu City,Jiangxi Province[J]. East China Geology,2023,44(4):424-438. (in Chinese with English abstract
    [9] 徐明,赵平,朱传庆,等. 江汉盆地钻井地温测量和大地热流分布[J]. 地质科学,2010,45(1):317-323. doi: 10.3969/j.issn.0563-5020.2010.01.026

    XU M,ZHAO P,ZHU C Q,et al. Borehole temperature logging and terrestrial heat flow distribution in Jianghan Basin[J]. Chinese Journal of Geology(Scientia Geologica Sinica),2010,45(1):317-323. (in Chinese with English abstract doi: 10.3969/j.issn.0563-5020.2010.01.026
    [10] ZUO Y H,JIANG S,WU S H,et al. Terrestrial heat flow and lithospheric thermal structure in the Chagan Depression of the Yingen-Ejinaqi Basin,north central China[J]. Basin Research,2020,32(6):1328-1346. doi: 10.1111/bre.12430
    [11] LIAO Y Z,LIU Y G,LIU F,et al. Lithospheric thermal structure in Jinggangshan City:Implications for high geothermal background[J]. Frontiers in Earth Science,2022,10:854232. doi: 10.3389/feart.2022.854232
    [12] 卫兴,师红杰,陈松,等. 水文地球化学方法在地热资源勘查中的应用:以湖北省应城市为例[J]. 地质科技通报,2024,43(3):68-80.

    WEI X,SHI H J,CHEN S,et al. Application of hydrogeochemical methods in geothermal resource exploration:A case study of Yingcheng City,Hubei Province[J]. Bulletin of Geological Science and Technology,2024,43(3):68-80. (in Chinese with English abstract
    [13] 邹才能,贾承造,赵文智,等. 松辽盆地南部岩性−地层油气藏成藏动力和分布规律[J]. 石油勘探与开发,2005,32(4):125-130. doi: 10.3321/j.issn:1000-0747.2005.04.021

    ZOU C N,JIA C Z,ZHAO W Z,et al. Accumulation dynamics and distribution of lithostratigraphic reservoirs in South Songliao Basin[J]. Petroleum Exploration and Development,2005,32(4):125-130. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0747.2005.04.021
    [14] 何文渊,柳波,张金友,等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学,2023,48(1):49-62.

    HE W Y,LIU B,ZHANG J Y,et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science,2023,48(1):49-62. (in Chinese with English abstract
    [15] 高航,王璞珺,高有峰,等. 松辽盆地南部上、下白垩统界线研究:以松辽盆地国际大陆科学钻探松科3井为例[J]. 地学前缘,2023,30(3):425-440.

    GAO H,WANG P J,GAO Y F,et al. The Upper-Lower Cretaceous boundary in the southern Songliao Basin:A case study of ICDP borehole SK-3[J]. Earth Science Frontiers,2023,30(3):425-440. (in Chinese with English abstract
    [16] MA J C,TIAN Y,LIU C,et al. P-wave tomography of Northeast Asia:Constraints on the western Pacific plate subduction and mantle dynamics[J]. Physics of the Earth and Planetary Interiors,2018,274:105-126. doi: 10.1016/j.pepi.2017.11.003
    [17] 刘晨璞,钟鑫,朱焕来. 松辽盆地北部中低地温场形成机制探讨[J]. 地质调查与研究,2016,39(4):316-320.

    LIU C P,ZHONG X,ZHU H L. Research on the formation mechanism for the medium-low geothermal field in the north of Songliao Basin[J]. Geological Survey and Research,2016,39(4):316-320. (in Chinese with English abstract
    [18] FENG Z Q,JIA C Z,XIE X N,et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin,Northeast China[J]. Basin Research,2010,22(1):79-95. doi: 10.1111/j.1365-2117.2009.00445.x
    [19] LIU X,ZHAO D P,LI S Z,et al. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications[J]. Earth and Planetary Science Letters,2017,464:166-174. doi: 10.1016/j.jpgl.2017.02.024
    [20] 唐杰,许文良,王枫,等. 古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代−古近纪岩浆记录[J]. 中国科学:地球科学,2018,48(5):549-583.

    TANG J,XU W L,WANG F,et al. Subduction history of the Paleo-Pacific slab beneath Eurasian continent:Mesozoic-Paleogene magmatic records in Northeast Asia[J]. Scientia Sinica(Terrae),2018,48(5):549-583. (in Chinese with English abstract
    [21] LI Z Q,CHEN J L,ZOU H,et al. Mesozoic-Cenozoic tectonic evolution and dynamics of the Songliao Basin,NE Asia:Implications for the closure of the Paleo-Asian Ocean and Mongol-Okhotsk Ocean and subduction of the Paleo-Pacific Ocean[J]. Earth-Science Reviews,2021,218:103471. doi: 10.1016/j.earscirev.2020.103471
    [22] 许文良,王旖旎,王枫,等. 西太平洋俯冲带的演变:来自东北亚陆缘增生杂岩的制约[J]. 地质论评,2022,68(1):1-17.

    XU W L,WANG Y N,WANG F,et al. Evolution of western Pacific subduction zones:Constraints from accretionary complexes in NE Asian continental margin[J]. Geological Review,2022,68(1):1-17. (in Chinese with English abstract
    [23] FURLONG K P,CHAPMAN D S. Heat flow,heat generation,and the thermal state of the lithosphere[J]. Annual Review of Earth and Planetary Sciences,2013,41:385-410. doi: 10.1146/annurev.earth.031208.100051
    [24] VILÀ M,FERNÁNDEZ M,JIMÉNEZ-MUNT I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling[J]. Tectonophysics,2010,490(3/4):152-164.
    [25] LACHENBRUCH A H. Crustal temperature and heat production:Implications of the linear heat-flow relation[J]. Journal of Geophysical Research,1970,75(17):3291-3300. doi: 10.1029/JB075i017p03291
    [26] HAENEL R,RYBACH L,STEGENA L,et al. Handbook of terrestrial heat-flow density determination:With guidelines and recommendations of the International Heat Flow Commission[M]. Dordrecht,Boston:Kluwer Academic Publishers,1988.
    [27] 饶松,胡圣标,朱传庆,等. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报,2013,56(8):2760-2770. doi: 10.6038/cjg20130824

    RAO S,HU S B,ZHU C Q,et al. The characteristics of heat flow and lithospheric thermal structure in Junggar Basin,Northwest China[J]. Chinese Journal of Geophysics,2013,56(8):2760-2770. (in Chinese with English abstract doi: 10.6038/cjg20130824
    [28] QIU N S,XU W,ZUO Y H,et al. Meso-Cenozoic thermal regime in the Bohai Bay Basin,eastern North China Craton[J]. International Geology Review,2015,57(3):271-289. doi: 10.1080/00206814.2014.1002818
    [29] 吴乾蕃,谢毅真. 松辽盆地大地热流[J]. 地震地质,1985,7(2):59-64.

    WU Q F,XIE Y Z. Geothermal heat flow in the Songhuajiang-Liaoning Basin[J]. Seismology and Geology,1985,7(2):59-64. (in Chinese with English abstract
    [30] SAEMUNDSSON K,AXELSSON G,STEINGRÍMSSON B. Geothermal systems in global perspective[J]. Environmental Science,Geology,Engineering,2013:55169275.
    [31] JIANG G Z,HU S B,SHI Y Z,et al. Terrestrial heat flow of continental China:Updated dataset and tectonic implications[J]. Tectonophysics,2019,753:36-48. doi: 10.1016/j.tecto.2019.01.006
    [32] 刘雨晨,柳波,朱焕来,等. 松辽盆地现今地温场分布特征及主控因素[J]. 地质学报,2023,97(8):2715-2727.

    LIU Y C,LIU B,ZHU H L,et al. The distribution characteristics and main controlling factors of present-day geothermal regime of the Songliao Basin[J]. Acta Geologica Sinica,2023,97(8):2715-2727. (in Chinese with English abstract
    [33] 付健,李思其,贾小江,等. 松辽盆地中央坳陷区中−新生代岩石圈厚度演化[J]. 地质科学,2023,58(3):798-809. doi: 10.12017/dzkx.2023.045

    FU J,LI S Q,JIA X J,et al. Mesozoic-Cenozoic lithospheric thickness evolution in the central depression of Songliao Basin[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2023,58(3):798-809. (in Chinese with English abstract doi: 10.12017/dzkx.2023.045
    [34] 许文良,孙德有,尹秀英. 大兴安岭海西期造山带的演化:来自花岗质岩石的证据[J]. 长春科技大学学报,1999,29(4):319-323.

    XU W L,SUN D Y,YIN X Y. Evolution of Hercynian orogenic belt in Daxing’anling Mt:Evidence from granitic rocks[J]. Journal of Changchun University of Science and Technology,1999,29(4):319-323. (in Chinese with English abstract
    [35] 韩江涛,郭振宇,刘文玉,等. 松辽盆地岩石圈减薄的深部动力学过程[J]. 地球物理学报,2018,61(6):2265-2279. doi: 10.6038/cjg2018L0155

    HAN J T,GUO Z Y,LIU W Y,et al. Deep dynamic process of lithosphere thinning in Songliao Basin[J]. Chinese Journal of Geophysics,2018,61(6):2265-2279. (in Chinese with English abstract doi: 10.6038/cjg2018L0155
    [36] 杨宝俊,张梅生,王璞珺,等. 论中国东部大型盆地区及邻区地质—地球物理复合尺度解析[J]. 地球物理学进展,2002,17(2):317-324. doi: 10.3969/j.issn.1004-2903.2002.02.019

    YANG B J,ZHANG M S,WANG P J,et al. Composite scale analysis of geology-geophysics in the major basins and surrounding areas in the eastern China[J]. Progress in Geophysics,2002,17(2):317-324. (in Chinese with English abstract doi: 10.3969/j.issn.1004-2903.2002.02.019
    [37] SUN P,GUO P Y,NIU Y L. Eastern China continental lithosphere thinning is a consequence of paleo-Pacific plate subduction:A review and new perspectives[J]. Earth-Science Reviews,2021,218:103680. doi: 10.1016/j.earscirev.2021.103680
    [38] GUO Z,WANG K,YANG Y J,et al. The origin and mantle dynamics of quaternary intraplate volcanism in Northeast China from joint inversion of surface wave and body wave[J]. Journal of Geophysical Research (Solid Earth),2018,123(3):2410-2425. doi: 10.1002/2017JB014948
    [39] 牛璞,韩江涛,曾昭发,等. 松辽盆地北部地热场深部控制因素研究:基于大地电磁探测的结果[J]. 地球物理学报,2021,64(11):4060-4074. doi: 10.6038/cjg2021O0453

    NIU P,HAN J T,ZENG Z F,et al. Deep controlling factors of the geothermal field in the northern Songliao Basin derived from magnetotelluric survey[J]. Chinese Journal of Geophysics,2021,64(11):4060-4074. (in Chinese with English abstract doi: 10.6038/cjg2021O0453
    [40] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学,1993,4(增刊1):1-40.

    DAI J X. Characteristics of hydrocarbon isotopes in natural gas and identification of various types of natural gas[J]. Natural Gas Geoscience,1993,4(S1):1-40. (in Chinese with English abstract
    [41] WANG X F,LIU Q Y,LIU W H,et al. Accumulation mechanism of mantle-derived helium resources in petroliferous basins,eastern China[J]. Science China Earth Sciences,2022,65(12):2322-2334. doi: 10.1007/s11430-022-9977-8
    [42] DAI D L,ZHAO R S,HU J,et al. The lithospheric thermal structure in the Songliao Basin inferred from thermal parameter analyses:Implications for the background of geothermal resources[J]. Natural Resources Research,2024,33(3):1103-1129. doi: 10.1007/s11053-023-10303-3
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  116
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 录用日期:  2024-07-01
  • 修回日期:  2024-06-26
  • 网络出版日期:  2024-11-26

目录

    /

    返回文章
    返回