Characteristics and formation period of fractures in the reservoirs of Permian Maokou Formation, Zigong area, Southwest Sichuan Basin
-
摘要:
四川盆地自贡地区二叠系茅口组海相碳酸盐岩储层裂缝普遍发育, 对储层的储集性能、渗流规律和油气富集具有重要影响。综合利用岩心、薄片、成像测井及分析测试等资料, 明确裂缝成因类型及发育特征, 分析裂缝形成时间, 确定裂缝形成期次。结果表明: 自贡地区茅口组海相碳酸盐岩储层发育构造剪切裂缝、构造张性裂缝、水平层理缝和成岩缝合线; 构造剪切裂缝为茅口组储层主要裂缝类型, 以NEE和NNE走向为主, 裂缝倾角介于20°~80°, 延伸长度小于60 cm, 充填程度较低, 有效性较好; 结合分析测试资料确定自贡地区茅口组储层裂缝形成于3期构造运动: 第1期为海西晚期-印支早期, 在华南板块顺时针运动派生的SW向应力作用下, 发育少量剪切裂缝, 裂缝多被矿物充填, 属于裂缝次要发育时期; 第2期形成于燕山晚期-喜山早期, 在江南雪峰隆起产生的NW向应力作用下发育大量构造裂缝, 是研究区裂缝主要形成时期; 第3期为喜山晚期, 裂缝形成于印度洋板块碰撞产生的NEE向挤压应力下, 且裂缝多无充填, 有效性较好。通过上述裂缝相关研究, 为研究区有利勘探区带确立提供了依据。
Abstract:Objective Fractures commonly occur in the marine carbonate reservoirs of Permian Maokou Formation in Zigong area of Sichuan Basin and have important impacts on reservoir properties, seepage patterns and hydrocarbon enrichment.
Methods Cores, thin sections, image logs and experimental test data were used to clarify the type of fracture genesis and development characteristics, analyse the time of fracture formation, and determine the period of fracture formation.
Results The results show that the marine carbonate reservoirs of Maokou Formation in Zigong area are divided into two types, namely, tectonic fractures and diagenetic fractures, among which the tectonic fractures include tectonic shear fractures and tectonic tensile fractures, and the diagenetic fractures include horizontal bedding fractures and diagenetic sutures. Tectonic shear fractures dominate Maokou Formation reservoir and occur mainly in the NEE and NNE directions. The fracture inclination angle ranges from 20° to 80°, and the extension length is less than 60 cm. The fracture degree of filling is low, and the validity is good. Combined with the analysis and test data, the reservoir fractures of Maokou Formation in Zigong area were determined to have formed by 3 stages of structural movement. The first stage included the late Hercynian and early Indosinian periods, approximately 240-220 Ma. Under the SW stress derived from the clockwise movement of the South China Plate, a small number of shear fractures developed, and the fractures were mostly filled with minerals, representing the secondary development period of fractures. The second stage occurred in the late Yanshan-early Himalayan period, approximately 78-69 Ma, and a large number of tectonic fractures developed under the NW-trending stress generated by the Xuefeng uplift in Jiangnan, which was the main period of fracture formation in the study area. The third period was the late Himalayan period, approximately 13-0 Ma. Fractures were formed under the NEE compressive stress generated by the collision of Indian Ocean Plate, and most of the fractures were unfilled, indicating good effectiveness.
Conclusion The above fracture-related research provides the basis for establishing favourable exploration zones in the study area.
-
Key words:
- fracture /
- reservoir /
- development characteristics /
- formation period /
- marine carbonate rock /
- Maokou Formation /
- Zigong area
-
图 2 自贡地区茅口组储层岩心观察裂缝特征照片
a.一组产状相同的构造剪切裂缝(见黄色箭头),富页2井,埋深3 115.83 m;b.构造剪切裂缝缝面平直,延伸较长,产状稳定,自贡1井,埋深3 045.24 m;c.构造剪切裂缝被溶蚀,威阳17井,埋深1 764.60 m;d.构造张性裂缝近直立发育,富页3井,埋深2 845.74 m;e.水平层理缝,横向连续性较差,裂缝尾部可见分叉,自贡1井,埋深3 293.82 m;f.顺层缝合线,与层面小角度斜交,缝面为锯齿状,音11井,埋深4 049.5 m
Figure 2. Photographs of observed fracture characteristics of the reservoir cores in Maokou Formation, Zigong area
图 3 自贡地区茅口组储层裂缝微观特征照片
a.一组平行发育的构造剪切裂缝(4条)(见黄色箭头),音5井,埋深4 195.65 m;b.构造剪切裂缝切穿生物结构(见红色箭头),威阳17井,埋深1 741.60 m;c.构造剪切裂缝存在充填差异,威阳17井,埋深1 768.78 m;d.构造剪切裂缝发生溶蚀,缝宽变大,威阳17井,埋深1 700.55 m;e.构造张性裂缝缝面不规则,威阳17井,埋深1 681.97 m;f.锯齿状缝合线,自贡1井,埋深3 074.62 m
Figure 3. Photographs of fracture microscopic characteristics of Maokou Formation reservoirs in Zigong area
图 12 自贡地区茅口组岩心、薄片裂缝交切关系
a.晚期无充填裂缝切割早期充填裂缝,富页3井,埋深2 900.44 m;b.被切割裂缝发生错动,音22井,茅口组,埋深4 135.20 m;c.早期充填裂缝限制晚期充填裂缝,富页2井,埋深3 121.89 m;d.一组充填裂缝切割另一组充填裂缝,威阳17井,埋深1 692.67 m;e.一组未充填裂缝切割另一组充填裂缝,音5井,埋深4 095.56 m;f.裂缝共轭相交,音5井,埋深4 210.37 m
Figure 12. Fracture intersection relationships of cores and thin sections in Maokou Formation, Zigong area
-
[1] 李剑, 曾旭, 田继先, 等. 中国陆上大气田成藏主控因素及勘探方向[J]. 中国石油勘探, 2021, 26(6): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202106001.htmLI J, ZENG X, TIAN J X, et al. Main controlling factors of gas accumulation and exploration target of large onshore gasfields in China[J]. China Petroleum Exploration, 2021, 26(6): 1-20. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202106001.htm [2] 吴裕根, 王陆新, 杨丽丽. 四川盆地大型气田战略发现有利因素分析及展望[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 411-417. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202304003.htmWU Y G, WANG L X, YANG L L. Analysis and prospect of favorable factors for strategic discovery of large gas fields in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science&Technology Edition), 2023, 50(4): 411-417. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202304003.htm [3] ZAMEHRIAN M, SEDAEE B. Underground hydrogen storage in a naturally fractured gas reservoir: The role of fracture[J]. International Journal of Hydrogen Energy, 2022, 47(93): 39606-39618. doi: 10.1016/j.ijhydene.2022.09.116 [4] 杨柳, 巫芙蓉, 郭鸿喜, 等. 川南YJ向斜区茅口组储层地震预测与主控因素分析[J]. 断块油气田, 2021, 28(3): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202103015.htmYANG L, WU F R, GUO H X, et al. Reservoir seismic prediction and main controlling factors analysis of Maokou Formation in YJ syncline area, South Sichuan Basin[J]. Fault-Block Oil&Gas Field, 2021, 28(3): 363-368. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202103015.htm [5] 张宇, 曹清古, 罗开平, 等. 四川盆地二叠系茅口组油气藏勘探发现与启示[J]. 石油与天然气地质, 2022, 43(3): 610-620. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202203010.htmZHANG Y, CAO Q G, LUO K P, et al. Reservoir exploration of the Permian Maokou Formation in the Sichuan Basin and enlightenment obtained[J]. Oil&Gas Geology, 2022, 43(3): 610-620. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202203010.htm [6] 陈蟒蛟, 谭开俊, 文龙, 等. 四川盆地中二叠统天然气成藏特征及巨大勘探前景[J]. 地学前缘, 2023, 30(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202301002.htmCHEN M J, TAN K J, WEN L, et al. Natural gas accumulation characteristics and great exploration potential of the Middle Permian in the Sichuan Basin[J]. Earth Science Frontiers, 2023, 30(1): 11-19. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202301002.htm [7] LUO X, CHEN S Q, LIU J W, et al. The fractured Permian reservoir and its significance in the gas exploitation in the Sichuan Basin, China[J]. Energies, 2023, 16(4): 1968. [8] CHEN Y F, QIN J, WANG Y H, et al. A discussion of hydrocarbon accumulation characteristics of carbonate rock in the Sichuan Basin[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(12): 10428-10432. [9] 赖文洪, 张德宽. 川南阳新统压裂酸化裂缝扩展模型研究[J]. 天然气工业, 1996, 16(4): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.019.htmLAI W H, ZHANG D K. Study on fracture propagation model of fracturing acidification in Neogene in Nanyang, Sichuan[J]. Natural Gas Industry, 1996, 16(4): 54-56. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.019.htm [10] 胡志水, 彭大钧, 戴弹申. 川南下二叠统局部构造断层应力数值模拟与裂缝分布[J]. 新疆石油地质, 1994, 15(2): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD402.010.htmHU Z S, PENG D J, DAI D S. Numerical simulation of fault stress and fracture distribution within the Lower Permian local structures in southern Sichuan[J]. Xinjiang Petroleum Geology, 1994, 15(2): 158-162. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD402.010.htm [11] 施振生, 赵圣贤, 赵群, 等. 川南地区下古生界五峰组-龙马溪组含气页岩岩心裂缝特征及其页岩气意义[J]. 石油与天然气地质, 2022, 43(5): 1087-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205007.htmSHI Z S, ZHAO S X, ZHAO Q, et al. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration[J]. Oil&Gas Geology, 2022, 43(5): 1087-1101. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205007.htm [12] 闫建平, 罗静超, 石学文, 等. 川南泸州地区奥陶系五峰组-志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202206005.htmYAN J P, LUO J C, SHI X W, et al. Fracture development models and significance of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(6): 60-71. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202206005.htm [13] 霍健, 王星皓, 罗超, 等. 川南地区龙马溪组页岩储层裂缝特征[J]. 工程地质学报, 2021, 29(1): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101018.htmHUO J, WANG X H, LUO C, et al. Fracture characteristics of Longmaxi shale in southern Sichuan[J]. Journal of Engineering Geology, 2021, 29(1): 171-182. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101018.htm [14] 王国锋, 张大伟, 邓守伟, 等. 四川盆地自贡区块茅口组岩溶储层发育特征及其主控因素[J]. 天然气工业, 2022, 42(9): 63-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202209006.htmWANG G F, ZHANG D W, DENG S W, et al. Development characteristics and main controlling factors of Maokou Formation karst reservoirs in Zigong block of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(9): 63-75. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202209006.htm [15] 沈华, 杨光, 屈卫华, 等. 四川盆地自贡地区中二叠统茅口组多类型储层特征及分布预测[J]. 中国石油勘探, 2023, 28(3): 49-63. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202303005.htmSHEN H, YANG G, QU W H, et al. Characteristics and prediction of multi-type reservoirs in the Middle Permian Maokou Formation in Zigong area, Sichuan Basin[J]. China Petroleum Exploration, 2023, 28(3): 49-63. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202303005.htm [16] 冯磊, 刘宏, 谭磊, 等. 岩溶古地貌恢复及油气地质意义: 以四川盆地泸州地区中二叠统茅口组为例[J]. 断块油气田, 2023, 30(1): 60-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301009.htmFENG L, LIU H, TAN L, et al. Karst paleogeomorphology restoration and hydrocarbon geological significance: A case study of Middle Permian Maokou Formation in Luzhou area of Sichuan Basin[J]. Fault-Block Oil&Gas Field, 2023, 30(1): 60-69. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301009.htm [17] TIAN X S, SHI Z J, YIN G, et al. Erratum to: Carbonate diagenetic products and processes from various diagenetic environments in Permian paleokarst reservoirs: A case study of the limestone strata of Maokou Formation in Sichuan Basin, South China[J]. Carbonates and Evaporites, 2017, 32(3): 431-433. [18] 杨明磊, 诸丹诚, 李涛, 等. 川南地区中二叠统茅口组颗粒滩对早成岩期岩溶储层的控制[J]. 现代地质, 2020, 34(2): 356-369. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202002016.htmYANG M L, ZHU D C, LI T, et al. Control of eogenetic karst reservoir by shoals in Middle Permian Maokou Formation, southern Sichuan Basin[J]. Geoscience, 2020, 34(2): 356-369. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202002016.htm [19] 任梦怡, 汪泽成, 江青春, 等. 川南地区中二叠统茅口组碳酸盐岩储层孔隙特征与储层成因[J]. 东北石油大学学报, 2021, 45(3): 32-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202103004.htmREN M Y, WANG Z C, JIANG Q C, et al. The carbonate reservoir characteristics and pore genesis in the Middle Permian Maokou Formation, southern Sichuan area[J]. Journal of Northeast Petroleum University, 2021, 45(3): 32-43. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202103004.htm [20] BAI X F, WANG X D, WANG Z G, et al. Characteristics and evolution of tectonic fractures in the Jurassic Lianggaoshan Formation shale in the Northeast Sichuan Basin[J]. Minerals, 2023, 13(7): 946. [21] 黄彦庆, 肖开华, 金武军, 等. 川东北元坝西部须家河组致密砂岩裂缝发育特征及控制因素[J]. 地质科技通报, 2023, 42(2): 105-114. doi: 10.19509/j.cnki.dzkq.2022.0099HUANG Y Q, XIAO K H, JIN W J, et al. Characteristics and controlling factors of tight sandstone reservoir fractures in the Xujiahe Formation of the western Yuanba area, northeastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 105-114. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0099 [22] 史今雄, 赵向原, 潘仁芳, 等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202302011.htmSHI J X, ZHAO X Y, PAN R F, et al. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying Formation, central Sichuan Basin[J]. Oil&Gas Geology, 2023, 44(2): 393-405. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202302011.htm [23] HOLLAND M, VAN GENT H, BAZALGETTE L, et al. Evolution of dilatant fracture networks in a normal fault: Evidence from 4D model experiments[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 399-406. [24] WANG H, HE Z L, JIANG S, et al. Genesis of bedding fractures in Ordovician to Silurian marine shale in Sichuan Basin[J]. Energies, 2022, 15(20): 7738. [25] HOU Z L, FUSSEIS F, SCHÖPFER M, et al. Synkinematic evolution of stylolite porosity[J]. Journal of Structural Geology, 2023, 173: 104916. [26] 张本健, 王兴志, 王宇峰, 等. 川西北九龙山地区中二叠统储层裂缝特征及形成机制[J]. 成都理工大学学报(自然科学版), 2019, 46(4): 497-506. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201904011.htmZHANG B J, WANG X Z, WANG Y F, et al. Occurrence characteristics and formation mechanism of fractures in Middle Permian reservoirs in Jiulongshan area, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science&Technology Edition), 2019, 46(4): 497-506. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201904011.htm [27] 牛海瑞, 杨少春, 汪勇, 等. 准噶尔盆地车排子地区火山岩裂缝形成期次分析[J]. 天然气地球科学, 2017, 28(1): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701008.htmNIU H R, YANG S C, WANG Y, et al. Analysis on the formation periods of fractures of volcanic reservoirs in Chepaizi area, Junggar Basin[J]. Natural Gas Geoscience, 2017, 28(1): 74-81. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701008.htm [28] BOM M H H, KOCHHANN K G D, KRAHL G, et al. Disentangling environmental and diagenetic δ18O and δ13C signals from marine carbonates deposited under warm climate conditions during the Early Danian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 622: 111576. [29] 马军, 房大志, 张培先, 等. 渝东南地区阳春沟构造带五峰组-龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7): 1117-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202207008.htmMA J, FANG D Z, ZHANG P X, et al. Characteristics and genesis of shale fractures in Wufeng-Longmaxi formations of Yangchungou structural belt in Southeast Chongqing[J]. Natural Gas Geoscience, 2022, 33(7): 1117-1131. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202207008.htm [30] LI S D, GAO L L, XIA F, et al. Genetic relationship between skarn and porphyry mineralization at the Saibo copper deposit, West Tianshan, NW China: Constraints from fluid inclusions, H-O-C-S-Pb isotopes, and geochronology[J]. Ore Geology Reviews, 2023, 162: 105709. [31] YU G D, YUAN W F, XI K L, et al. Fracturing timing of Jurassic reservoirs in the Dibei-Tuziluoke gas field, Kuqa foreland basin: Evidence from petrography, fluid inclusions, and clumped isotopes[J]. Energy Geoscience, 2024, 5(2): 100259. [32] 陈少伟, 刘建章. 含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望[J]. 地质科技通报, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426CHEN S W, LIU J Z. Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 81-92. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0426 [33] 张坦. 川南地区断裂特征与构造样式分析[D]. 北京: 中国地质大学(北京), 2020.Zhang T. Fracture characteristics andconstrual styles in southern Sichuan area[D]. Beijing: China University of Geosciences (Beijing), 2020. (in Chinese with English abstract) [34] 李海洋. 蜀南地区西南部震旦系灯影组成藏条件研究[D]. 北京: 中国石油大学(北京), 2016.Li H Y. Study of hydrocarbon accumulation conditions about Dengying Formation of Sinian in Southwest of Shunan area[D]. Beijing: China University of Petroleum (Beijing), 2016. (in Chinese with English abstract) [35] 李海平. 蜀南地区茅口组与嘉陵江组天然气成因与来源及运聚模式[D]. 北京: 中国石油大学(北京), 2020.Li H P. Genetic, sources and transportation and accumulation patterns of natural gas in the Maokou and Jialingjiang formations in southern Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2020. (in Chinese with English abstract)