A logging evaluation method for geological engineering "double sweet spot" for shallow marine shale gas: A case study of the Luzhai Formation in the northern Guizhong Depression
-
摘要:
桂中坳陷北部鹿寨组海相富有机质页岩是滇黔桂盆地页岩气勘探的重要接替领域, 目前在勘探初期已取得重大突破, 因此开展地质-工程一体化的评价工作极为关键。利用岩心、薄片和扫描电镜等岩石物理实验和常规、成像、核磁共振及阵列声波等测井资料, 在岩心刻度测井和小层精细划分的基础上, 分别开展了地质和工程“甜点”要素测井表征研究。通过对烃源岩品质、储层品质和工程品质叠合, 最终完成了地质-工程“双甜点”的耦合与优选。研究表明: 鹿寨组一段页岩岩性以硅质页岩、混合质页岩和灰质页岩3种类型为主。孔渗物性偏低,
w (TOC)介于1%~2%之间。生物硅含量低, 硅质来源主要为陆源碎屑供给, 页岩气主要赋存在黏土矿物相关孔隙和微裂缝中, 且以吸附气为主而游离气较少。脆性指数介于20%~80%之间, 且基本均大于40%。应力差异系数介于0.26~0.50, 现今最大水平主应力方向为NNE-SSW方向。优选③小层底部页岩“甜点”层段作为水平井靶窗, 水平段实钻气测结果显示良好。研究成果能够为页岩气单井“甜点”测井评价与水平井靶窗优选提供理论指导和方法支撑。Abstract:Objective The marine organic-rich shale of the Luzhai Formation of the northern Guizhong Depression is an important replacement field for shale gas exploration in the Dian-Qian-Gui Basin. At present, great breakthroughs have been made in the initial stage of exploration. So it is very important to evaluate the geological-engineering integration.
Methods In this study, petrophysical data (e.g., core, thin section and scanning electron microscopy data) and logging data (e.g., conventional, imaging, nuclear magnetic resonance and array acoustic) are used to study the logging characteristics of geological and engineering "sweet spots" on the basis of core calibration logs and fine delineation of small layers, respectively. By superimposing the hydrocarbon source rock quality, reservoir quality and engineering quality, the coupling and optimization of geological and engineering "double sweet spots" are finally completed.
Results The results show that the lithology of the shale in the first member of the Luzhai Formation is dominated by three types: siliceous shale, mixed shale and gray shale. The organic matter abundance and pore permeability are low, and the TOC content is between 1% and 2%. The biogenic silica content is low, and the source of silica is mainly the land source of debris supply. Shale gas is mainly stored in the pore spaces and microfractures associated with clay minerals, and adsorbed gas is the main source, while the free gas content accounts for a small proportion. The brittleness index ranges from 20% to 80% and is basically greater than 40%. The stress coefficient of variation ranges from 0.26 to 0.50, and the direction of the present maximum horizontal in situ stress is NNE-SSW.
Conclusion The shale "sweet spot" section at the bottom of the third small layer was selected as the target window of the horizontal well, and the results of horizontal section drilling and gas measurement showed good results. The research results can provide theoretical guidance and methodological support for the evaluation of "sweet spot" logging and the selection of horizontal well target windows for shale gas wells.
-
图 1 桂中坳陷构造位置及鹿寨组地层柱状图(改自文献[18])
a.桂中坳陷构造区域划分;b.桂中坳陷鹿寨组一段地层柱状图。SQ1为第一地层序列;HST为高位体系域;TST为海侵体系域
Figure 1. Tectonic position of the Guizhong Depression and stratigraphic histogram of the Luzhai Formation
图 6 桂中坳陷北部鹿寨组一段页岩储集空间特征
a.石英与黏土矿物之间发育少量粒间孔,1 385.5 m,桂融地2井;b.石英与黏土矿物之间发育少量粒间孔,1 385.5 m,桂融地2井;c.石英内部可见少量孤立粒内孔,1 380 m,桂融地2井;d.方解石内部发育不规则状溶蚀孔,1 611.85 m,桂融页1井;e.方解石内部可见少量溶蚀孔,1 389 m,桂融地2井;f.草莓状黄铁矿晶间孔被有机质充填,1 626.75 m,桂融页1井;g.块状有机质中可见孤立分散状有机质孔,1 620.37 m,桂融页1井;h.有机质内部可见不规则状有机质孔,1 385.5 m,桂融地2井;i.伊蒙混层发育层间孔缝,1 620.37 m,桂融页1井
Figure 6. Characteristics of reservoir space in the First Member of the Luzhai Formation shale in the northern Guizhong Depression
图 8 桂中坳陷北部鹿寨组一段页岩岩心裂缝发育特征
a.高角度充填裂缝, 1 367.45 m,桂融地2井;b.顺层滑脱缝,1 399.85 m,桂融地2井;c.镜面擦痕,1 609.38 m,桂融页1井;d.层理缝被黄铁矿充填, 1 403.55 m,桂融地2井;e.层间页理缝,1 598.62 m,桂融页1井;f.网状裂缝,1 611.03 m,桂融页1井
Figure 8. Characteristics of core fractures in the First Member of the Luzhai Formation shale in the northern Guizhong Depression
表 1 研究区鹿寨组一段页岩地质-工程“双甜点”测井划分标准
Table 1. Log division standard of the shale geological engineering "double sweet spot" of the Luzhai Formation in the study area
类别 地质“甜点” 工程“甜点” 烃源岩品质 储层品质 工程品质 评价指标 w(TOC)/% 有效孔隙度/% 总含气量/(m3·t-1) 脆性指数/% 应力差异系数 Ⅰ类 >2 >2.5 >1.5 >55 <0.3 Ⅱ类 [1, 2] [1, 2.5] [1, 1.5] [45, 55] [0.3, 0.4] Ⅲ类 <1 <1 <1 <45 >0.4 -
[1] 郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202204001.htmGUO X S, TENG G E, WEI X F, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 453-468. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202204001.htm [2] 郭彤楼, 熊亮, 雷炜, 等. 四川盆地南部威荣、永川地区深层页岩气勘探开发进展、挑战与思考[J]. 天然气工业, 2022, 42(8): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208005.htmGUO T L, XIONG L, LEI W, et al. Deep shale gas exploration and development in the Weirong and Yongchuan areas, South Sichuan Basin: Progress, challenges and prospect[J]. Natural Gas Industry, 2022, 42(8): 45-59. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208005.htm [3] JARVIE D M, HILL R J, RUBLE T E. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91: 475-499. doi: 10.1306/12190606068 [4] 蒋廷学, 卞晓冰, 孙川翔, 等. 深层页岩气地质工程一体化体积压裂关键技术及应用[J]. 地球科学, 2023, 48(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301001.htmJIANG T X, DIAN X B, SUN C X, et al. Key technologies in geology-engineering integration volumetric fracturing for deep shale gas wells[J]. Earth Science, 2023, 48(1): 1-13. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301001.htm [5] RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the barnett shale[C]//Anon. SPE Annual Technical Conference & Exhibition. [S. l. ]: Society of Petroleum Engineers, 2008. [6] ABUAMARAH B A, NABAWY B S, SHEHATA A M, et al. Integrated geological and petrophysical characterization of Oligocene deep marine unconventional poor to tight sandstone gas reservoir[J]. Marine and Petroleum Geology, 2019, 109: 868-885. doi: 10.1016/j.marpetgeo.2019.06.037 [7] 刘双莲. 页岩气"双甜点"参数测井评价方法. 石油与天然气地质, 2022, 43(4): 1005-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202204020.htmLIU S L. Logging evaluation of "double sweet spot" in shale gas reservoirs[J]. Oil & Gas Geology, 2022, 43(4): 1005-1012. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202204020.htm [8] 王必金, 包汉勇, 刘皓天, 等. 川东红星地区吴家坪组富有机质页岩特征与发育控制因素[J]. 地质科技通报, 2023, 42(5): 70-81. doi: 10.19509/j.cnki.dzkq.tb20230149WANG B J, BAO H Y, LIU H T, et al. Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area, eastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 70-81. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230149 [9] 何希鹏, 何贵松, 高玉巧, 等. 常压页岩气勘探开发关键技术进展及攻关方向[J]. 天然气工业, 2023, 43(6): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202306001.htmHE X P, HE G S, GAO Y Q, et al. Progress in and research direction of key technologies for normal-pressure shale gas exploration and development[J]. Natural Gas Industry, 2023, 43(6): 1-14. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202306001.htm [10] 马新华, 张晓伟, 熊伟, 等. 中国页岩气发展前景及挑战[J]. 石油科学通报, 2023, 8(4): 491-501. doi: 10.3969/j.issn.2096-1693.2023.04.037MA X H, ZHANG X W, XIONG W, et al. Prospects and challenges of shale gas development in China[J]. Petroleum Science Bulletin, 2023, 8(4): 491-501. (in Chinese with English abstract) doi: 10.3969/j.issn.2096-1693.2023.04.037 [11] 赖锦, 凡雪纯, 黎雨航, 等. 苏北盆地古近系阜宁组页岩七性关系与三品质测井评价[J]. 地质论评, 2022, 68(2): 751-768. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202202023.htmLAI J, FAN X C, LI Y H, et al. Well logging evaluation of seven kinds of relationships and three types of properties of Paleogene Funing Formation oil shales in Subei Basin[J]. Geological Review, 2022, 68(2): 751-768. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202202023.htm [12] 谭玉涵, 张凤生, 姚亚彬, 等. 页岩纹层的测井评价方法研究: 以川南五峰组-龙马溪组为例[J]. 地质科技通报, 2023, 42(6): 281-296. doi: 10.19509/j.cnki.dzkq.tb20220385TAN Y H, ZHANG F S, YAO Y B, et al. Logging evaluation of shale laminae: A case study from the Wufeng-Longmaxi formations in the southern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 281-296. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220385 [13] 武恒志, 熊亮, 葛忠伟, 等. 四川盆地威远地区页岩气优质储层精细刻画与靶窗优选[J]. 天然气工业, 2019, 39(3): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201903003.htmWU H Z, XIONG L, GE Z W, et al. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin[J]. Natural Gas Industry, 2019, 39(3): 11-20. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201903003.htm [14] 姜振学, 梁志凯, 申颍浩, 等. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向[J]. 地球科学, 2023, 48(1): 110-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301008.htmJIANG Z X, LIANG Z K, SHEN Y H, et al. Coupling key factors of shale gas sweet spot and research direction of geology-engineering integration in southern Sichuan[J]. Earth Science, 2023, 48(1): 110-129. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301008.htm [15] 王红岩, 刘钰洋, 张晓伟, 等. 基于层次分析法的页岩气储层地质工程一体化甜点评价: 以昭通页岩气示范区太阳页岩气田海坝地区X井区为例[J]. 地球科学, 2023, 48(1): 92-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301007.htmWANG H Y, LIU Y Y, ZHANG X W, et al. Geology-engineering intergration shale gas sweet spot evaluation based on analytic hierarchy process: Application to Zhaotong shale gas demonstration district, Taiyang shale gas field, Haiba area, X well region[J]. Earth Science, 2023, 48(1): 92-109. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301007.htm [16] 胡东风, 魏志红, 刘若冰, 等. 桂中坳陷下石炭统黑色页岩发育特征及页岩气勘探潜力[J]. 天然气工业, 2018, 38(10): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201810005.htmHU D F, WEI Z H, LIU R B, et al. Development characteristics and shale gas exploration potential of the Lower Carboniferous black shale in the Guizhong Depression[J]. Natural Gas Industry, 2018, 38(10): 28-37. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201810005.htm [17] 覃英伦, 雷雨, 蒋恕, 等. 桂中坳陷北部下石炭统鹿寨组一段页岩气成藏条件与资源潜力评价[J]. 石油科学通报, 2022, 7(2): 139-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202202002.htmQIN Y L, LEI Y, JIANG S, et al. Shale gas accumulation conditions and resource potential evaluation of Member 1 of the Lower Carboniferous Luzhai Formation in the northern Guizhong Depression[J]. Petroleum Science Bulletin, 2022, 7(2): 139-154. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202202002.htm [18] 王祥, 赵迎冬, 岑文攀, 等. 滇黔桂盆地桂中坳陷下石炭统鹿寨组页岩气勘探潜力[J]. 天然气地球科学, 2023, 34(9): 1515-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202309004.htmWANG X, ZHAO Y D, CHEN W P, et al. Exploration potential of Lower Carboniferous Luzhai Formation shale gas in Guizhong Depression, Dian-Qian-Gui Basin[J]. Natural Gas Geoscience, 2023, 34(9): 1515-1534. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202309004.htm [19] 陈轶林, 孔令明, 梁浩然. 下古生界海相页岩TOC测井预测模型优选及应用: 以川南长宁地区为例[J]. 地质论评, 2023, 69(3): 1021-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202303013.htmCHEN Y L, KONG N M, LIANG H R, et al. Optimization of total organic carbon from well logging data in Lower Paleozoic marine shale: A case study from Changning area, southern Sichuan Basin[J]. Geological Review, 2023, 69(3): 1021-1030. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202303013.htm [20] 谭茂金, 武宏亮, 王思宇, 等. 中国海相页岩气测井评价技术进展与发展方向[J]. 石油学报, 2024, 45(1): 241-260. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202401014.htmTAN M J, WU H L, WANG S Y, et al. Progress and development direction of log interpretation technology for marine shale gas in China[J]. Acta Petrolei Sinica, 2024, 45(1): 241-260. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202401014.htm [21] 周纯润, 王亮, 苏树特, 等. 基于ΔLogR-GR法的有机碳含量测井评价方法: 以川东南地区茅口组一段为例[J]. 天然气地球科学, 2024, 35(3): 542-552. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202403012.htmZHOU C R, WANG L, SU S T, et al. Research on organic carbon content logging evaluation method based on ΔLogR-GR method: Case study from Mao-1 in southeastern Sichuan Basin[J]. Natural Gas Geoscience, ,2024, 35(3): 542-552. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202403012.htm [22] 李军, 武清钊, 路菁, 等. 页岩气储层总孔隙度与有效孔隙度测量及测井评价: 以四川盆地龙马溪组页岩气储层为例[J]. 石油与天然气地质, 2017, 38(3): 602-609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703020.htmLI J, WU Q Z, LU J, et al. Measurement and logging evaluation of total porosity and effective porosity of shale gas reservoirs: A case from the Silurian Longmaxi Formation shale in the Sichuan Basin[J]. Oil & Gas Geology, 2017, 38(3): 602-609. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703020.htm [23] ZHANG P F, LU S F, LI J Q, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)[J]. Marine and Petroleum Geology, 2018, 89: 775-785. [24] 孙颖. 核磁共振在页岩储层参数评价中的应用综述[J]. 地球物理学进展, 2023, 38(1): 254-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202301021.htmSUN Y. Review of the application of nuclear magnetic resonance in the evaluation of shale reservoir parameters[J]. Progress in Geophysics, 2023, 38(1): 254-270. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202301021.htm [25] NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340. [26] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. [27] 张金川, 刘树根, 魏晓亮, 等. 页岩含气量评价方法[J]. 石油与天然气地质, 2021, 42(1): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101004.htmZHANG J C, LIU S G, WEI X L, et al. Evaluation of gas content in shale[J]. Oil & Gas Geology, 2021, 42(1): 28-40. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101004.htm [28] TIAN H, LI T F, ZHANG T W, et al. Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, Southwest China: Experimental results and geological implications[J]. International Journal of Coal Geology, 2016, 156: 36-49. [29] 颜磊, 周文, 樊靖宇, 等. 川南深层页岩气储层含气量测井计算方法[J]. 测井技术, 2019, 43(2): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201902010.htmYAN L, ZHOU W, FAN J Y, et al. Log evaluation method for gas content of deep shale gas reservoirs in southern Sichuan Basin[J]. Well Logging Technology, 2019, 43(2): 149-154. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201902010.htm [30] 夏宏泉, 刘畅, 王瀚玮, 等. 页岩含气量测井评价方法研究[J]. 特种油气藏, 2019, 26(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903001.htmXIA H Q, LIU C, WANG H W, et al. Logging evaluation of shale gas content[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 1-6. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201903001.htm [31] 史鹏, 姜呈馥, 陈义国, 等. 鄂尔多斯盆地延长组页岩含气量测井评价[J]. 特种油气藏, 2016, 23(3): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201603014.htmSHI P, JIANG C F, CHEN Y G, et al. Logging evaluation of Yanchang shale gas content in Ordos Basin[J]. Special Oil & Gas Reservoirs, 2016, 23(3): 61-65. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201603014.htm [32] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. [33] 吴建发, 赵圣贤, 范存辉, 等. 川南长宁地区龙马溪组富有机质页岩裂缝发育特征及其与含气性的关系[J]. 石油学报, 2021, 42(4): 428-446. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104002.htmWU J F, ZHAO S X, FAN C H, et al. Fracture characteristics of the Longmaxi Formation shale and its relationship with gas-bearing properties in Changning area, southern Sichuan[J]. Acta Petrolei Sinica, 2021, 42(4): 428-446. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104002.htm [34] 赖锦, 肖露, 白天宇, 等. 成像测井解释评价方法及其地质应用[J]. 地质科技通报, 2024, 43(3): 323-340. doi: 10.19509/j.cnki.dzkq.tb20220701LAI J, XIAO L, BAI T Y, et al. Interpretation and evaluation methods of image logs and their geological applications[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 323-340. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220701 [35] 王兆生, 曾联波, 李晶, 等. 地应力测井解释方法及其可靠性对比[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202206001.htmWANG Z S, ZENG L B, LI J, et al. In-situ stress logging interpretation methods and reliability analysis[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(6): 1-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202206001.htm [36] 钟文俊, 熊亮, 黎鸿, 等. 测井评价技术在威荣深层页岩气田中的应用[J]. 油气藏评价与开发, 2021, 11(1): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101006.htmZHONG W J, XIONG L, LI H, et al. Application of log evaluation technology in Weirong deep shale gas field[J]. Reservoir Evaluation and Development, 2021, 11(1): 38-46. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101006.htm [37] WANG S, WANG G W, LI D, et al. Comparison between double caliper, imaging logs, and array sonic log for determining the in situ stress direction: A case study from the ultra-deep fractured tight sandstone reservoirs, the Cretaceous Bashijiqike Formation in Keshen 8 region of Kuqa Depression, Tarim Basin, China[J]. Petroleum Science, 2022, 19(6): 2601-2617. [38] 邹才能, 赵群, 王红岩, 等. 中国海相页岩气主要特征及勘探开发主体理论与技术[J]. 天然气工业, 2022, 42(8): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208001.htmZOU C N, ZHAO Q, WANG H Y, et al. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry, 2022, 42(8): 1-13. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208001.htm [39] 张少龙, 闫建平, 郭伟, 等. 基于岩石物理相的深层页岩气地质-工程甜点参数测井评价方法: 以四川盆地LZ区块五峰组-龙马溪组为例[J]. 石油地球物理勘探, 2023, 58(1): 214-227. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202301023.htmZHANG S L, YAN J P, GUO W, et al. Logging evaluation method of geological-engineering sweet spot parameters for deep shale gas based on petrophysical facies: A case study of the Wufeng-Longmaxi Formation in LZ block of Sichuan Basin[J]. Oil Geophysical Prospecting, 2023, 58(1): 214-227. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202301023.htm [40] 丛平, 闫建平, 井翠, 等. 页岩气储层可压裂性级别测井评价及展布特征: 以川南X地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202103019.htmCONG P, YAN J P, JING C, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3): 177-188. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202103019.htm [41] 黄玉越, 王贵文, 宋连腾, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩储集层裂缝测井识别与有效性分析[J]. 古地理学报, 2022, 24(3): 540-555. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202203010.htmHUANG Y Y, WANG G W, SONG L T, et al. Fracture logging identification and effectiveness analysis of shale reservoir of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(3): 540-555. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202203010.htm [42] 李红斌, 王贵文, 庞小娇, 等. 苏北盆地古近系阜宁组页岩工程品质测井评价[J]. 地质科技通报, 2023, 42(3): 311-322. doi: 10.19509/j.cnki.dzkq.tb20210692LI H B, WANG G W, PANG X J, et al. Logging evaluation of the engineering quality of the Paleogene Funing Formation oil shales in the Subei Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 311-322. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210692 [43] 熊亮, 赵勇, 魏力民, 等. 威荣海相页岩气田页岩气富集机理及勘探开发关键技术[J]. 石油学报, 2023, 44(8): 1365-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202308013.htmXIONG L, ZHAO Y, WEI L M, et al. Enrichment mechanisms and key exploration and development technologies of shale gas in Weirong marine shale gas field[J]. Acta Petrolei Sinica, 2023, 44(8): 1365-1381. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202308013.htm [44] 董大忠, 梁峰, 管全中, 等. 四川盆地五峰组-龙马溪组页岩气优质储层发育模式及识别评价技术[J]. 天然气工业, 2022, 42(8): 96-111. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208006.htmDONG D Z, LIANG F, GUAN Q Z, et al. Development model and identification evaluation technology of Wufeng-Longmaxi Formation quality shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 96-111. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208006.htm