留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地热水回灌耦合CO2地质封存系统安全性分析

罗亚南 蒋坤卿 黄思浩 冯波 卜宪标

罗亚南, 蒋坤卿, 黄思浩, 冯波, 卜宪标. 地热水回灌耦合CO2地质封存系统安全性分析[J]. 地质科技通报, 2024, 43(3): 59-67. doi: 10.19509/j.cnki.dzkq.tb20230618
引用本文: 罗亚南, 蒋坤卿, 黄思浩, 冯波, 卜宪标. 地热水回灌耦合CO2地质封存系统安全性分析[J]. 地质科技通报, 2024, 43(3): 59-67. doi: 10.19509/j.cnki.dzkq.tb20230618
LUO Yanan, JIANG Kunqing, HUANG Sihao, FENG Bo, BU Xianbiao. Safety analysis of geothermal water recharge coupled with CO2 geological storage system[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 59-67. doi: 10.19509/j.cnki.dzkq.tb20230618
Citation: LUO Yanan, JIANG Kunqing, HUANG Sihao, FENG Bo, BU Xianbiao. Safety analysis of geothermal water recharge coupled with CO2 geological storage system[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 59-67. doi: 10.19509/j.cnki.dzkq.tb20230618

地热水回灌耦合CO2地质封存系统安全性分析

doi: 10.19509/j.cnki.dzkq.tb20230618
基金项目: 

国家自然科学基金项目 41972314

详细信息
    作者简介:

    罗亚南, E-mail: luoyn@ms.giec.ac.cn

    通讯作者:

    卜宪标, E-mail: buxb@ms.giec.ac.cn

  • 中图分类号: P314.2

Safety analysis of geothermal water recharge coupled with CO2 geological storage system

More Information
  • 摘要:

    在圈闭良好的水热型地热储层, 开展CO2随回灌水同时注入储层的研究, 既具有经济效益又具有碳封存的环境效益。建立了3D储层模型, 对不同井距、地层倾角、筛管位置和采灌速率下CO2突破时间以及富含CO2的盐水在储层中的运移情况进行了研究。结果表明: (1)在采灌速率为20 kg/s, 20 a运行时间内井距为1 200 m时CO2未突破; (2)在倾斜地层中, 当回灌井位于开采井下游时, 随地层倾角增加, CO2突破时间延长, 沿地层下倾方向碳酸水运移距离增大; (3)综合考虑筛管位置对突破时间和突破后开采井中CO2质量分数的影响, 回灌井筛管位于储层上部30 m、开采井筛管位于储层下部30 m时, 有利于CO2地质封存的安全性和有效性; (4)采灌速率对CO2突破时间影响较大, 当采灌速率为12 kg/s时, CO2未突破; 当采灌速率增加到28 kg/s时, 突破时间缩短到11.8 a。因此, 在实际工程应用中可以通过对操作参数和地层固有特性的研究延缓CO2突破, 提高CO2地质封存安全性。

     

  • 图 1  地热水回灌与CO2地质封存耦合系统

    Figure 1.  Coupling system of geothermal water recharge and CO2 geological storage

    图 2  3D概念模型

    Figure 2.  3D conceptual model

    图 3  井距对CO2突破时间的影响

    Figure 3.  Effect of well spacing on CO2 breakthrough time

    图 4  井距对液相中CO2质量分数分布的影响(a~d井距分别为800, 1 000, 1 200, 1 400 m)

    Figure 4.  Effect of well spacing on the distribution of the CO2 mass fraction in the liquid phase

    图 5  倾斜地层xz平面图(θ为地层倾角)

    Figure 5.  xz plan view of inclined formation

    图 6  回灌井位于开采井下游(a)和上游(b)地层倾角对CO2突破时间的影响

    Figure 6.  Effect of formation inclination angle on CO2 breakthrough time when the recharge well is located downstream (a) and upstream (b) of the production well

    图 7  地层倾角对液相中CO2质量分数分布的影响(a~f地层倾角分别为0°, 2°, 4°, 6°, 8°, 10°)

    Figure 7.  Effect of the formation inclination angle on the distribution of the CO2 mass fraction in the liquid phase

    图 8  筛管位置对CO2突破时间的影响(方案参数见表 2, 下同)

    Figure 8.  Effect of sieve tube position on CO2 breakthrough time

    图 9  筛管位置对液相CO2质量分数分布的影响(a~e分别为方案1, 方案11, 方案12, 方案13, 方案14)

    Figure 9.  Effect of the sieve tube position on the distribution of the CO2 mass fraction in the liquid phase

    图 10  采灌速率对CO2突破时间的影响

    Figure 10.  Effect of exploitation and reinjection rate on CO2 breakthrough time

    图 11  采灌速率对液相CO2质量分数分布的影响(a~e采灌速率分别为12, 16, 20, 24, 28 kg/s)

    Figure 11.  Effect of the exploitation and reinjection rate on the distribution of the CO2 mass fraction in the liquid phase

    图 12  采灌速率对气相CO2饱和度分布的影响(a, b采灌速率分别为12, 16 kg/s)

    Figure 12.  Effect of the exploitation and reinjection rate on the distribution of the CO2 saturation in the gas phase

    表  1  储层及注入参数[23]

    Table  1.   Reservoir and injection parameters

    主要参数 参数取值
    孔隙度/% 20
    水平渗透率/10-3 μm2 600
    垂直渗透率/10-3 μm2 30
    岩石密度/(kg·m-3) 2 650
    岩石热传导率/(W·m-1·℃-1) 2.5
    岩石比热容/(J·kg-1·℃-1) 920
    回灌温度/℃ 35
    CO2注入速率/(kg·s-1) 0.8
    地热水回灌速率/(kg·s-1) 12~28
    下载: 导出CSV

    表  2  不同方案的参数设置

    Table  2.   Parameter settings for different solutions

    方案 回灌井位置/m 开采井位置/m 井距/m 地层倾角/(°) 筛管位置/m 采灌速率/(kg·s-1) 备注
    1 500 -500 1 000 0 60 20 基础方案
    2 300 -300 600 0 60 20 井距
    3 400 -400 800 0 60 20
    4 600 -600 1 200 0 60 20
    5 700 -700 1 400 0 60 20
    6 500 -500 1 000 2 60 20 地层倾角
    7 500 -500 1 000 4 60 20
    8 500 -500 1 000 6 60 20
    9 500 -500 1 000 8 60 20
    10 500 -500 1 000 10 60 20
    11 500 -500 1 000 0 回灌井:储层上部30 m
    开采井:储层上部30 m
    20 筛管位置
    12 500 -500 1 000 0 回灌井:储层上部30 m
    开采井:储层下部30 m
    20
    13 500 -500 1 000 0 回灌井:储层下部30 m
    开采井:储层上部30 m
    20
    14 500 -500 1 000 0 回灌井:储层下部30 m
    开采井:储层下部30 m
    20
    15 500 -500 1 000 0 60 12 采灌速率
    16 500 -500 1 000 0 60 16
    17 500 -500 1 000 0 60 24
    18 500 -500 1 000 0 60 28
    下载: 导出CSV
  • [1] YANG B L, SHAO C, HU X L, et al. Advances in carbon dioxide storage projects: Assessment and perspectives[J]. Energy & Fuels, 2023, 37(3): 1757-1776.
    [2] LI M W, QIN J R, HAN Z Y, et al. Low-carbon economic optimization method for integrated energy systems based on life cycle assessment and carbon capture utilization technologies[J]. Energy Science & Engineering, 2023, 11(11): 4238-4255.
    [3] 章程, 肖琼, 孙平安, 等. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5): 190-198. doi: 10.19509/j.cnki.dzkq.2022.0193

    ZHANG C, XIAO Q, SUN P A, et al. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 190-198. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0193
    [4] PARK J, PARK S S, CHO J, et al. Analysis on caprock and aquifer properties related with leakage during CO2 storage[J]. Geosystem Engineering, 2016, 19(4): 188-196. doi: 10.1080/12269328.2016.1165632
    [5] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007002.htm

    WANG G L, LIN W J. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923-1937. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007002.htm
    [6] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm

    WANG G L, LIU Y G, ZHU X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
    [7] BROWN D. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Anon. Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering. Stanford, California, United States: Stanford University, 2000: 233-238.
    [8] PRUESS K. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6): 1446-1454.
    [9] RANDOLPH J B, SAAR M O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration[J]. Energy Procedia, 2011, 4: 2206-2213.
    [10] PAN C J, CHÁVEZ O, ROMERO C E, et al. Heat mining assessment for geothermal reservoirs in Mexico using supercritical CO2 injection[J]. Energy, 2016, 102: 148-160.
    [11] SALIMI H, WOLF K H. Integration of heat-energy recovery and carbon sequestration[J]. International Journal of Greenhouse Gas Control, 2012, 6: 56-68.
    [12] GANJDANESH R, BRYANT S L, ORBACH R L, et al. Coupled carbon dioxide sequestration and energy production from geopressured/geothermal aquifers[J]. SPE Journal, 2014, 19(2): 239-248.
    [13] BUSCHECK T A, CHEN M, SUN Y, et al. Two-stage, integrated, geothermal-CO2 storage reservoirs: An approach for sustainable energy production, CO2-sequestration security, and reduced environmental risk[R]. Livermore, California, United States: Lawrence Livermore National Lab. (LLNL), 2012.
    [14] JING J, YANG Y L, TANG Z H. Assessing the influence of injection temperature on CO2 storage efficiency and capacity in the sloping formation with fault[J]. Energy, 2021, 215: 119097.
    [15] WANG F G, JING J, XU T F, et al. Impacts of stratum dip angle on CO2 geological storage amount and security[J]. Greenhouse Gases (Science and Technology), 2016, 6(5): 682-694.
    [16] WANG F, JING J, YANG Y, et al. Impacts of injection pressure of a dip-angle sloping strata reservoir with low porosity and permeability on CO2 injection amount[J]. Greenhouse Gases Science & Technology, 2017, 7(1): 92-105.
    [17] 林鹏威, 曾平, 林署炯, 等. 增强型地热系统热储层研究进展[J]. 中外能源, 2015, 20(10): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201510007.htm

    LIN P W, ZENG P, LIN S J, et al. Advances in research on reservoirs of enhanced geothermal system[J]. Sino-Global Energy, 2015, 20(10): 21-30. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201510007.htm
    [18] PRUESS K. ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2[M]. Berkeley, CA, United States: Lawrence Berkeley National Laboratory, 2005.
    [19] ZHANG K, WU Y S, PRUESS K. User's guide for TOUGH2-MP: A massively parallelversion of the TOUGH2 code[R]. Berkeley, CA, United States: Lawrence Berkeley National Laboratory, 2008.
    [20] 杨艳林, 许天福, 靖晶. OpenMP在CO2地质储存数值模拟并行计算中的应用[J]. 水文地质工程地质, 2018, 45(5): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805019.htm

    YANG Y L, XU T F, JING J. Application of parallel computing with OpenMP in numerical simulation of CO2 geological storage[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 129-135. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805019.htm
    [21] PRUESS K, OLDENBURG C, MORIDIS G. TOUGH2 user's guide version 2[R]. Berkeley, CA, United States: Lawrence Berkeley National Laboratory, 1999.
    [22] 李红斌, 王贵文, 庞小娇, 等. 苏北盆地古近系阜宁组页岩工程品质测井评价[J]. 地质科技通报, 2023, 42(3): 311-322. doi: 10.19509/j.cnki.dzkq.tb20210692

    LI H B, WANG G W, PANG X J, et al. Logging evaluation of the engineering quality of the Paleogene Funing Formation oil shales in the Subei Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 311-322. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210692
    [23] 莫绍星, 龙星皎, 李瀛, 等. 基于TOUGHREACT-MP的苏北盆地盐城组咸水层CO2矿物封存数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1647-1658. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405025.htm

    MO S X, LONG X J, LI Y, et al. Numerical modeling of CO2 sequestration in the saline aquifer of Yancheng Formation in Subei Basin using TOUGHREACT-MP[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(5): 1647-1658. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405025.htm
    [24] BU F, XU T, WANG F, et al. Influence of highly permeable faults within a low-porosity and low-permeability reservoir on migration and storage of injected CO2[J]. Geofluids, 2016, 16(4): 769-781.
    [25] MUKHOPADHYAY S, DOUGHTY C A, BACON D H, et al. Preliminary model comparison results from the Sim-SEQ project using TOUGH2, STOMP, Eclipse, and VESA approach[R]. Richland, WA, United States: Pacific Northwest National Laboratory, 2013.
    [26] SPYCHER N, PRUESS K. CO2-H2O mixtures in the geological sequestration of CO2: Ⅱ. Partitioning in chloride brines at 12-100 ℃ and up to 600 bar[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3309-3320.
    [27] 王福刚, 郭兵, 杨永智, 等. 中高渗倾斜地层与水平地层中CO2地质封存的差异性对比[J]. 地球科学与环境学报, 2020, 42(2): 246-255. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202002009.htm

    WANG F G, GUO B, YANG Y Z, et al. Comparison on the difference of CO2 geological storage between sloping and horizontal strata with mid-high permeability[J]. Journal of Earth Sciences and Environment, 2020, 42(2): 246-255. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202002009.htm
    [28] JING J, YANG Y L, TANG Z H, et al. Impacts of salinity on CO2 spatial distribution and storage amount in the formation with different dip angles[J]. Environmental Science and Pollution Research International, 2019, 26(22): 22173-22188.
    [29] JING J, TANG Z H, YANG Y L, et al. Impact of formation slope and fault on CO2 storage efficiency and containment at the Shenhua CO2 geological storage site in the Ordos Basin, China[J]. International Journal of Greenhouse Gas Control, 2019, 88: 209-225.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  124
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 录用日期:  2024-01-25
  • 修回日期:  2024-01-25

目录

    /

    返回文章
    返回