留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电化学阻抗分析的多因素作用下锚杆−砂浆界面粘结性能研究

王旭晨 柯睿 王亮清 朱悦 郑罗斌 孙自豪

王旭晨,柯睿,王亮清,等. 基于电化学阻抗分析的多因素作用下锚杆−砂浆界面粘结性能研究[J]. 地质科技通报,2025,44(0):1-10 doi: 10.19509/j.cnki.dzkq.tb20230622
引用本文: 王旭晨,柯睿,王亮清,等. 基于电化学阻抗分析的多因素作用下锚杆−砂浆界面粘结性能研究[J]. 地质科技通报,2025,44(0):1-10 doi: 10.19509/j.cnki.dzkq.tb20230622
WANG Xuchen,KE Rui,WANG Liangqing,et al. Bonding performance of anchor-mortar interface under multifactor action based on electrochemical impedance analysis[J]. Bulletin of Geological Science and Technology,2025,44(0):1-10 doi: 10.19509/j.cnki.dzkq.tb20230622
Citation: WANG Xuchen,KE Rui,WANG Liangqing,et al. Bonding performance of anchor-mortar interface under multifactor action based on electrochemical impedance analysis[J]. Bulletin of Geological Science and Technology,2025,44(0):1-10 doi: 10.19509/j.cnki.dzkq.tb20230622

基于电化学阻抗分析的多因素作用下锚杆−砂浆界面粘结性能研究

doi: 10.19509/j.cnki.dzkq.tb20230622
基金项目: 国家自然科学基金项目(42302314;42202316;41931295)
详细信息
    作者简介:

    王旭晨:E-mail:wxc1834@126.com

    通讯作者:

    E-mail:wlq027@126.com

  • 中图分类号: TV41

Bonding performance of anchor-mortar interface under multifactor action based on electrochemical impedance analysis

More Information
  • 摘要:

    影响锚杆−砂浆界面粘结性能的因素众多,而目前对该界面粘结性能的研究聚焦于单因素的影响,多因素作用下界面粘结性能的研究仍留有空白。以锚杆−砂浆为研究对象,采用电化学阻抗谱测试技术获取不同影响因素下的锚杆−砂浆界面状态以及电化学参数,通过拉拔试验获取锚杆−砂浆界面粘结强度,并结合电化学参数,探究试样养护完成时,电化学参数与拉拔荷载之间的关系,分析细砂粒径、锚杆直径和水灰比3个因素对锚杆−砂浆界面粘结性能的影响。由正交试验敏感性分析可知,试样的拉拔荷载主要受锚杆直径控制,孔隙溶液电阻(Rs)主要受水灰比控制,电荷转移电阻(Rct)则没有明显的控制性因素;在试样养护完成时,受3个因素的影响,锚杆−砂浆界面会出现钝化膜完整与钝化膜不完整2种状态。研究结果表明,在试验所选择的范围内,拉拔荷载会随着细砂粒径的增大和水灰比的减小而增大,并且试样的拉拔荷载与孔隙溶液电阻(Rs)和电荷转移电阻(Rct)呈正相关。研究成果对锚固结构砂浆配比及应用中的有效性验证具有重要意义。

     

  • 图 1  电化学阻抗谱测试技术示意图

    WE. 工作电极;CE. 对电极;RE. 参比电极;ZAHNER ZENNIUM PRO. 电化学工作站

    Figure 1.  Schematic diagram of electrochemical impedance spectroscopy technique

    图 2  拉拔试验示意图

    Figure 2.  Schematic diagram of pull-out test

    图 3  锚杆−砂浆试样Nyquist图(T1~T8设计方案见表1

    Z. 阻抗;Z'. 阻抗实部,即电阻分量;−Z''. 阻抗虚部,即电容或电阻分量

    Figure 3.  Nyquist diagram of anchor-mortar specimen

    图 4  锚杆−砂浆试样Bode图

    $ \left|Z\right| $. 阻抗模值;Phase. 相位角;f. 频率

    Figure 4.  Bode diagram of anchor-mortar specimen

    图 5  等效电路模型

    CPE. 恒定相位元件;Rs. 孔隙溶液电阻;Rf. 钢筋钝化膜电阻;Cdl. 双电层电容;Rct. 电荷转移电阻;下同

    Figure 5.  Equivalent circuit model

    图 6  锚杆−砂浆试样拉拔荷载及平均粘结强度

    Figure 6.  Pull-out load and average bond strength of anchor-mortar specimen

    图 7  不同锚杆直径d下孔隙溶液电阻−拉拔荷载关系图

    Figure 7.  Pore solution resistance-pulling load relationship for different anchor diameters

    图 8  不同锚杆直径d下电荷转移电阻−拉拔荷载关系图

    Figure 8.  Charge transfer resistance-pulling load relationship for different anchor diameters

    图 9  拉拔作用机理图

    N. 拉拔荷载;T. 砂浆对锚杆的压力;f. 摩擦力;U. 机械咬合力;RR'分别为锚杆与砂浆所受合力

    Figure 9.  Mechanism of drawing action

    表  1  锚杆−砂浆试样设计方案

    Table  1.   Anchor-mortar specimen design programme

    编号 细砂粒径/mm 锚杆直径/mm 水灰比
    T1 0.40 4 0.40
    T2 0.40 6 0.45
    T3 0.40 8 0.50
    T4 0.50 4 0.45
    T5 0.50 6 0.50
    T6 0.50 8 0.40
    T7 0.60 4 0.50
    T8 0.60 6 0.40
    T9 0.60 8 0.45
    下载: 导出CSV

    表  2  硅酸盐水泥化学成分

    Table  2.   Chemical composition of silicate cement wB/%

    SiO2Fe2O3Al2O3CaOMgOSO3烧失量
    23.54.17.456.43.22.23.2
    下载: 导出CSV

    表  3  钢筋的物理参数

    Table  3.   Physical parameters of reinforcing steel

    直径/mm 密度/(g·cm−3) 抗拉强度/MPa 屈服强度/MPa 弹性模量/GPa
    4,6,8 7.85 540 400 196
    下载: 导出CSV

    表  4  拟合后锚杆−砂浆试样的EIS参数

    Table  4.   EIS parameters of fitted anchor-mortar specimens

    试验组 $ {R}_{{\mathrm{s}}} $/$ \mathrm{\Omega } $ $ {C}_{{\mathrm{f}}} $/
    ($ {\mathrm{S}}·{{\mathrm{sec}}}^{{\mathrm{n}}} $)
    n1 $ R_{\mathrm{f}}$/$ \mathrm{\Omega } $ $ {C}_{{\mathrm{dl}}} $/
    $ {\mathrm{S}}·{{\mathrm{sec}}}^{{\mathrm{n}}} $
    n2 $ {R}_{{\mathrm{ct}}} $/
    $ {10}^{5}\mathrm{\Omega } $
    T1 141.2 3.709×10−6 0.5408 2322 2.796×10−8 0.8295 7.140
    T2 112.5 3.215×10−6 0.5624 31310 1.349×10−7 0.8977 7.296
    T3 107.8 4.286×10−6 0.5504 186.9 3.974×10−7 0.7969 4.336
    T4 122.1 7.015×10−7 0.7039 258 3.632×10−6 0.6141 5.207
    T5 103.3 3.901×10−6 0.5726 1946 2.003×10−7 0.8761 6.851
    T6 135.2 3.947×10−6 0.5468 2542 2.763×10−6 0.8313 6.365
    T7 116.1 3.9659×10−6 0.5949 2080 3.292×10−6 0.8147 5.960
    T8 150.1 2.94×10−5 0.9071 67750 5.857×10−6 0.5370 13.330
    T9 128.7 4.189×10−6 0.5527 1949 2.608×10−7 0.8431 6.107
    注:Cf. 钢筋钝化膜电容;n1n2. 均为弥散系数
    下载: 导出CSV

    表  5  拉拔荷载极差分析

    Table  5.   Extreme variance analysis of pullout loads

    水平编号 细砂粒径 锚杆直径 水灰比
    111.4509.56710.674
    211.39011.69011.337
    311.63313.21711.237
    极差0.2433.6500.663
    下载: 导出CSV

    表  6  拉拔荷载方差分析

    Table  6.   Analysis of variance (ANOVA) for pull-out loads

    因素 细砂粒径 锚杆直径 水灰比 误差
    方差 0.096 20.162 0.767 0.050
    自由度 2 2 2 2
    F 1.922 401.984 15.300
    p 0.342 0.002** 0.061
    R2 0.998
    **. 差异极其显著;*. 存在显著差异;注:F. 评估影响因素作用的显著程度;p衡量控制组与实验组差异大小;R2. 决定系数,用于衡量组间差异对总变异的解释程度;下同
    下载: 导出CSV

    表  7  孔隙溶液电阻(Rs)极差分析

    Table  7.   Extreme variance analysis of pore solution resistance(Rs)

    水平编号 细砂粒径 锚杆直径 水灰比
    1120.500126.467142.167
    2120.203121.970121.100
    3131.633123.900109.07
    极差11.434.49733.097
    下载: 导出CSV

    表  8  孔隙溶液电阻(Rs)方差分析

    Table  8.   Analysis of variance (ANOVA) for pore solution resistance(Rs)

    因素 细砂粒径 锚杆直径 水灰比 误差
    方差 254.684 30.533 1683.915 44.121
    自由度 2 2 2 2
    F 5.772 0.692 38.166
    p 0.148 0.591 0.026*
    R2 0.978
    下载: 导出CSV

    表  9  电荷转移电阻(Rct)极差分析

    Table  9.   Charge Transfer Resistance (Rct) Polar Analysis Table

    水平编号 细砂粒径 锚杆直径 水灰比
    16.2576.1028.945
    26.1419.1596.203
    38.4665.6035.715
    极差2.3253.5563.230
    下载: 导出CSV

    表  10  电荷转移电阻(Rct)方差分析

    Table  10.   ANOVA for charge transfer resistance(Rct)

    因素 细砂粒径 锚杆直径 水灰比 误差
    方差10.29622.23618.1862.056
    自由度2222
    F5.00710.8138.843
    p0.1660.0850.102
    R20.961
    下载: 导出CSV
  • [1] 王上上,陈富,李东贤,等. 锚杆不确定性对加固边坡失稳概率的影响[J]. 地质科技通报,2022,41(2):282-289.

    WANG S S,CHEN F,LI D X,et al. Influence of anchor uncertainty on the failure probability of reinforced slope[J]. Bulletin of Geological Science and Technology,2022,41(2):282-289. (in Chinese with English abstract
    [2] WANG C L,ZHENG L B,WANG L Q,et al. Effects of the tensile and shear properties of bolts on the shear properties of bolted rock joints[J]. Journal of Earth Science,2024,35(5):1626-1639. doi: 10.1007/s12583-022-1749-3
    [3] 周阳,来弘鹏,王兴广,等. 长锚杆/锚索改善深埋大跨度隧道初支结构受力试验研究[J]. 岩土工程学报,2024,46(4):853-863. doi: 10.11779/CJGE20221533

    ZHOU Y,LAI H P,WANG X G,et al. Experimental study on improving mechanical characteristics of initial support structure of deep buried large-span tunnels with long bolts or cables[J]. Chinese Journal of Geotechnical Engineering,2024,46(4):853-863. (in Chinese with English abstract doi: 10.11779/CJGE20221533
    [4] 刘宇鹏,夏才初,吴福宝,等. 高地应力软岩隧道长、短锚杆联合支护技术研究[J]. 岩石力学与工程学报,2020,39(1):105-114.

    LIU Y P,XIA C C,WU F B,et al. A combined support technology of long and short bolts of soft rock tunnels under high ground stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):105-114. (in Chinese with English abstract
    [5] 张文翔,崔强,邱昊茨,等. 输电线路单群锚基础抗拔特征差异的现场足尺试验[J]. 地质科技通报,2024,43(6):114-124.

    ZHANG W X,CUI Q,QIU H C,et al. On-site full-scale test research for difference of anti-pull bearing characteristics between single anchor and group anchors foundation of transmission lines[J]. Bulletin of Geological Science and Technology,2024,43(6):114-124. (in Chinese with English abstract
    [6] 孙益振,郑卫锋,范志强. 输电线路节理化岩体注浆锚杆基础抗拔力模型试验研究[J]. 岩土力学,2012,33(1):78-82. doi: 10.3969/j.issn.1000-7598.2012.01.013

    SUN Y Z,ZHENG W F,FAN Z Q. Tension model test research on grouted bolts foundation in jointed rock masses for transmission lines[J]. Rock and Soil Mechanics,2012,33(1):78-82. (in Chinese with English abstract doi: 10.3969/j.issn.1000-7598.2012.01.013
    [7] 吴善百,王亮清,吴琼,等. 地震作用下锚固岩质边坡动力响应研究进展与展望[J]. 地球科学,2022,47(12):4456-4468.

    WU S B,WANG L Q,WU Q,et al. Advance and prospect for seismic dynamic response of anchored rock slope[J]. Earth Science,2022,47(12):4456-4468. (in Chinese with English abstract
    [8] 李师毓,吴琼,王亮清,等. 地震作用下软硬互层顺层岩质边坡动力响应研究[J]. 地球科学,2023,48(8):3127-3136.

    LI S Y,WU Q,WANG L Q,et al. Study of dynamic response of soft and hard interbedded rock slopes under earthquakes[J]. Earth Science,2023,48(8):3127-3136. (in Chinese with English abstract
    [9] 朱鸿鹄. 工程地质界面:从多元表征到演化机理[J]. 地质科技通报,2023,42(1):1-19.

    ZHU H H. Engineering geological interface:From multivariate characterization to evolution mechanism[J]. Bulletin of Geological Science and Technology,2023,42(1):1-19. (in Chinese with English abstract
    [10] YU S S,ZHU W C,NIU L L,et al. Experimental and numerical analysis of fully grouted long rockbolt load-transfer behavior[J]. Tunnelling and Underground Space Technology,2019,85:56-66. doi: 10.1016/j.tust.2018.12.001
    [11] HAIDAR H H,MUSSA F I,DAWOOD A O,et al. Experimental study of post installed rebar anchor systems for concrete structure[J]. Civil and Environmental Engineering,2020,16(2):308-319. doi: 10.2478/cee-2020-0031
    [12] YANG S Y,CHEN X L,HAN M,et al. Effect of sulfate attack,drying-wetting cycles and freezing-thawing cycles on reinforced concrete columns under eccentric loads[J]. Structures,2022,45:1864-1877. doi: 10.1016/j.istruc.2022.10.011
    [13] XU S H,LI A B,JI Z Y,et al. Seismic performance of reinforced concrete columns after freeze-thaw cycles[J]. Construction and Building Materials,2016,102:861-871. doi: 10.1016/j.conbuildmat.2015.10.168
    [14] MOOSAVI M,JAFARI A,KHOSRAVI A. Bond of cement grouted reinforcing bars under constant radial pressure[J]. Cement and Concrete Composites,2005,27(1):103-109. doi: 10.1016/j.cemconcomp.2003.12.002
    [15] ZHANG N,GU Q,WU Y Z,et al. Refined peridynamic modeling of bond-slip behaviors between ribbed steel rebar and concrete in pull-out tests[J]. Journal of Structural Engineering,2022,148(12):04022197. doi: 10.1061/(ASCE)ST.1943-541X.0003396
    [16] HU Z J,SHAH Y I,YAO P F. Experimental and numerical study on interface bond strength and anchorage performance of steel bars within prefabricated concrete[J]. Materials,2021,14(13):3713. doi: 10.3390/ma14133713
    [17] XU H. Research on anchor characteristics of anchorage body consideration of bolt corrosion[J]. Advanced Materials Research,2011,374/377:2497-2504. doi: 10.4028/www.scientific.net/AMR.374-377.2497
    [18] MENG F J,CHEN W X,MA J J,et al. Bond behaviors of BFRP bars in concrete using carbon fiber rib anchorage[J]. Construction and Building Materials,2022,345:128305. doi: 10.1016/j.conbuildmat.2022.128305
    [19] KALTHOFF M,RAUPACH M. Pull-out behaviour of threaded anchors in fibre reinforced ordinary concrete and UHPC for machine tool constructions[J]. Journal of Building Engineering,2021,33:101842. doi: 10.1016/j.jobe.2020.101842
    [20] EL ALAMI E,FEKAK F E,GARIBALDI L,et al. Numerical study of the bond strength evolution of corroded reinforcement in concrete in pull-out tests[J]. Applied Sciences,2022,12(2):654. doi: 10.3390/app12020654
    [21] 姜凤娇. 混凝土水泥水化、氯离子扩散及钢筋锈蚀的电化学分析[D]. 辽宁大连:大连理工大学,2020.

    JIANG F J. Electrochemical analysis of cement hydration,chloride ion diffusion and steel corrosion of concrete[D]. DalianLiaoning:Dalian University of Technology,2020. (in Chinese with English abstract
    [22] 黄俊. 电催化界面和反应的电化学阻抗谱研究:经典永不褪色[J]. 电化学,2020,26(1):1-18.

    HUANG J. Electrochemical impedance spectroscopy for electrocatalytic interfaces and reactions:Classics never die[J]. Journal of Electrochemistry,2020,26(1):1-18. (in Chinese with English abstract
    [23] 李国翠. 水泥基材料水化过程基本特性的电化学阻抗谱研究[D]. 哈尔滨:哈尔滨工业大学,2010.

    LI G C. Electrochemical impedance spectroscopy study on basic characteristics of hydration process of cement-based materials[D]. Harbin:Harbin Institute of Technology,2010. (in Chinese with English abstract
    [24] YANG L X,WU Y T,CHEN S,et al. A promising hybrid additive for enhancing the performance of alkaline aluminum-air batteries[J]. Materials Chemistry and Physics,2021,257:123787. doi: 10.1016/j.matchemphys.2020.123787
    [25] OLIVEIRA R L N,BRAGANÇA M O G P,MEDEIROS-JUNIOR R A. Effect of coarse aggregate size on corrosion of reinforced concrete exposed to carbonation and chloride ingress by electrochemical measurements[J]. Construction and Building Materials,2022,361:129665. doi: 10.1016/j.conbuildmat.2022.129665
    [26] DONG B Q,QIU Q W,XIANG J Q,et al. Electrochemical impedance interpretation of the carbonation behavior for fly ash-slag-cement materials[J]. Construction and Building Materials,2015,93:933-942. doi: 10.1016/j.conbuildmat.2015.05.066
    [27] KE R,WANG L Q,ZOU Z X,et al. An analytical model for anchor-mortar interface bonding based on electrochemical impedance spectroscopy[J]. Cement and Concrete Composites,2023,142:105196. doi: 10.1016/j.cemconcomp.2023.105196
    [28] KE R,WANG L Q,ZHENG L B,et al. Deterioration of mechanical properties at the anchor-mortar interface considering the effect of two-phase corrosion[J]. Construction and Building Materials,2023,370:130664. doi: 10.1016/j.conbuildmat.2023.130664
    [29] JIANG L H,NIU Y L,JIN W Z,et al. Influence of chloride salt type on chloride ion diffusion performance of alkali-activated slag mortar[J]. Construction and Building Materials,2022,351:128930. doi: 10.1016/j.conbuildmat.2022.128930
    [30] DU F Y,JIN Z Q,SHE W,et al. Chloride ions migration and induced reinforcement corrosion in concrete with cracks:A comparative study of current acceleration and natural marine exposure[J]. Construction and Building Materials,2020,263:120099. doi: 10.1016/j.conbuildmat.2020.120099
    [31] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 岩土锚杆与喷射混凝土支护工程技术规范: GB 50086-2015[S]. 北京:中国计划出版社,2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Insplieation and Quarantine of the People's Republic of China.Technical code for engineering of ground anchorages and shotcrete support: GB 50086-2015[S]. Beijing: China Planning Press, 2015. (in Chinese)
    [32] 中华人民共和国住房和城乡建设部. 混凝土结构后锚固技术规程:JGJ145-2013[S]. 北京:中国建筑工业出版社,2013.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for post-installed fastenings in concrete structures: JGJ 145-2013[S]. Beijing: China Architecture & Building Press,2013. (in Chinese)
    [33] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 混凝土结构试验方法标准: GB/T 50152-2012 [S]. 北京:中国建筑工业出版社,2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Insplieation and Quarantine of the People's Republic of China. Standard for test method of concrete structures: GB/T 50152-2012 [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [34] 伍远辉,罗宿星,付盈盈,等. 氯离子环境下混凝土钢筋的电化学阻抗谱特征[J]. 表面技术,2011,40(3):65-67. doi: 10.3969/j.issn.1001-3660.2011.03.018

    WU Y H,LUO S X,FU Y Y,et al. EIS characteristics of the steel in concrete in environment containing chloride ion[J]. Surface Technology,2011,40(3):65-67. (in Chinese with English abstract doi: 10.3969/j.issn.1001-3660.2011.03.018
    [35] 施锦杰,孙伟. 等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究[J]. 腐蚀科学与防护技术,2011,23(5):387-392.

    SHI J J,SUN W. Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete[J]. Corrosion Science and Protection Technology,2011,23(5):387-392. (in Chinese with English abstract
    [36] RIBEIRO D V,ABRANTES J C C. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete:A new approach[J]. Construction and Building Materials,2016,111:98-104. doi: 10.1016/j.conbuildmat.2016.02.047
    [37] CARÉ S,NGUYEN Q T,L’HOSTIS V,et al. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar[J]. Cement and Concrete Research,2008,38(8/9):1079-1091.
    [38] LIU G J,ZHANG Y S,WU M,et al. Study of depassivation of carbon steel in simulated concrete pore solution using different equivalent circuits[J]. Construction and Building Materials,2017,157:357-362. doi: 10.1016/j.conbuildmat.2017.09.104
    [39] LI Y,YIN S P,LV H L. Performance of interface between TRC and existing concrete under a chloride dry-wet cycle environment[J]. Journal of Central South University,2020,27(3):876-890. doi: 10.1007/s11771-020-4338-6
    [40] SHI T,ZHENG L W,XU X C. Evaluation of alkali reactivity of concrete aggregates via AC impedance spectroscopy[J]. Construction and Building Materials,2017,145:548-554. doi: 10.1016/j.conbuildmat.2017.04.053
    [41] JIANG Z,CAI G J,TIAN G L,et al. Effect of aggregate particle size on mortar pore structure[J]. Construction and Building Materials,2022,352:128988. doi: 10.1016/j.conbuildmat.2022.128988
    [42] ZHENG S J,LIU T L,JIANG G S,et al. Effects of water-to-cement ratio on pore structure evolution and strength development of cement slurry based on HYMOSTRUC3D and micro-CT[J]. Applied Sciences,2021,11(7):3063. doi: 10.3390/app11073063
    [43] XIAOYU,ZHANG Y J,QU N,et al. Electrochemical analysis of passivation film formation on steel rebar in concrete[J]. International Journal of Electrochemical Science,2016,11(7):5870-5876. doi: 10.20964/2016.07.44
    [44] GUTBERLET T,HILBIG H,BEDDOE R E. Acid attack on hydrated cement:Effect of mineral acids on the degradation process[J]. Cement and Concrete Research,2015,74:35-43. doi: 10.1016/j.cemconres.2015.03.011
  • 加载中
图(9) / 表(10)
计量
  • 文章访问数:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 录用日期:  2024-01-18
  • 修回日期:  2024-01-13
  • 网络出版日期:  2025-03-21

目录

    /

    返回文章
    返回