留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

枯竭油气藏储集库储热供暖耦合CO2封存性能分析

王延欣

王延欣. 枯竭油气藏储集库储热供暖耦合CO2封存性能分析[J]. 地质科技通报, 2024, 43(3): 12-21. doi: 10.19509/j.cnki.dzkq.tb20230628
引用本文: 王延欣. 枯竭油气藏储集库储热供暖耦合CO2封存性能分析[J]. 地质科技通报, 2024, 43(3): 12-21. doi: 10.19509/j.cnki.dzkq.tb20230628
WANG Yanxin. Performance analysis of thermal energy storage for space heating and CO2 sequestration in depleted oil and gas reservoirs[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 12-21. doi: 10.19509/j.cnki.dzkq.tb20230628
Citation: WANG Yanxin. Performance analysis of thermal energy storage for space heating and CO2 sequestration in depleted oil and gas reservoirs[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 12-21. doi: 10.19509/j.cnki.dzkq.tb20230628

枯竭油气藏储集库储热供暖耦合CO2封存性能分析

doi: 10.19509/j.cnki.dzkq.tb20230628
基金项目: 

中国石油化工集团有限公司项目“新能源与石化减碳的融合发展研究” JR22012

详细信息
    通讯作者:

    王延欣, E-mail: wangyanxinxxsy@163.com

  • 中图分类号: P314.2;TE357.7

Performance analysis of thermal energy storage for space heating and CO2 sequestration in depleted oil and gas reservoirs

More Information
  • 摘要:

    利用枯竭油气藏储存热能并封存CO2, 既可解决太阳能跨季节储热难题, 又可扩大可再生能源供暖占比, 同时还可提高CO2地质封存的经济性。提出了枯竭油气藏储热供暖耦合CO2封存的新方案, 以CO2作为循环工质, 夏季吸收太阳热量储存于油气藏背斜构造中, 而冬季取出供暖, 建立了储释能过程的数学模型, 重点分析了枯竭油气藏储能系统热工性能和CO2封存性能。结果表明: (1)新方案储能系统热工性能优异。单井平均采热功率4 808.95 kW, 每个采暖季可有效利用的平均储热量49 859.21 GJ, 平均能量储存密度28 984.23 kJ/m3。(2)CO2密度对温度敏感的特性降低了热损失, 提高了系统效率。枯竭油气藏储能系统平均能量回收效率95.84%, 平均热回收效率83.66%。(3)储能加速了CO2溶解。储释能过程中周期性的注入和采出工作气导致气液界面反复膨胀收缩, 增加了气水接触面积, 提高了传质动力, 加速了CO2在水中的溶解。对比储能模式和仅CO2封存模式, CO2溶解比例增量由0.26%上升至2.22%。枯竭油气藏储热供暖耦合CO2封存新方案既有优异的热工性能, 又加速了CO2的地质封存, 是一种高值化的枯竭油气藏利用和可再生能源供暖方案, 具有大规模推广应用的潜力。

     

  • 图 1  枯竭油气藏储热供暖及CO2封存系统图

    Figure 1.  System diagram of thermal energy storage for space heating and CO2 sequestration in depleted oil and gas reservoirs

    图 2  枯竭油气藏结构模型及参数

    Figure 2.  Structural model and parameters of depleted oil and gas reservoirs

    图 3  枯竭油气藏储能系统热工性能

    Figure 3.  Thermal performance of energy storage system in depleted oil and gas reservoirs

    图 4  枯竭油气藏储集库CO2储热季末物理参数数值模拟对比图

    a, b.第1和第20个储热季末密度场;c, d.第1和第20个储热季末温度场;e, f.第20个储热季末和采热季末气相CO2饱和度分布;g, h.第1和第20个储热季末压力场。Sg.气相CO2饱和度,下同

    Figure 4.  Comparison of numerical simulation of physical parameters of CO2 heat storage seasons in depleted oil and gas reservoirs

    图 5  储层中CO2溶解量

    Figure 5.  Dissolved CO2 in the reservoir

    图 6  储层中气相CO2饱和度和溶解度

    a, c.第20个储能季末;b, d.第20个采暖季末;e, f.仅CO2封存模式下第20个采暖季末。x(CO2)为气相CO2溶解度

    Figure 6.  CO2 saturation and solubility in gas phase in the reservoir

    表  1  枯竭油气藏储层和盖层参数

    Table  1.   Parameters of depleted oil and gas reservoirs and caprocks

    参数 储层数值 盖层数值
    水平渗透率/m2 1×10-13 1×10-19
    垂直渗透率/m2 1×10-13 1×10-19
    孔隙率 0.2 0.01
    比热容/(J·kg-1·K-1) 920 920
    导热系数(wet)/(W·m-1·K-1) 2.5 2.5
    导热系数(dry)/(W·m-1·K-1) 1.6 1.6
    密度/(kg·m-3) 2 650 2 650
    压缩系数/Pa-1 4.5×10-10 4.5×10-10
    盐度/(kg·kg-1) 0.01 0.01
    下载: 导出CSV
  • [1] 国家发展改革委. 全国燃煤取暖面积约占总取暖面积的83%[EB/OL]. (2019-12-09)[2024-02-29] https://www.china5e.com/news/news-1077717-1.html

    National Development and Reform Commission. Thenational coal heating area accounts for about 83% of the total heating area[EB/OL]. (2019-12-09)[2024-02-29] https://www.china5e.com/news/news-1077717-1.html
    [2] ZHANG Z X, ZHOU Y G, ZHAO N, et al. Clean heating during winter season in northern China: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111339. doi: 10.1016/j.rser.2021.111339
    [3] LI M Q, VIRGUEZ E, SHAN R, et al. High-resolution data shows China's wind and solar energy resources are enough to support a 2050 decarbonized electricity system[J]. Applied Energy, 2022, 306: 117996. doi: 10.1016/j.apenergy.2021.117996
    [4] 太阳界官微. 五大数据看变化: 《2020中国太阳能热利用行业运行状况报告》发布[EB/OL]. (2020-12-08)[2024-02-29] https://www.sohu.com/a/436972751_281732

    Official Blog of the Solar Realm. Five major data changes: 《2020 China Solar Thermal Utilization Industry Operating Status Report》released[EB/OL]. (2020-12-08)[2024-02-29] https://www.sohu.com/a/436972751_281732
    [5] YANG T R, LIU W, KRAMER G J, et al. Seasonal thermal energy storage: A techno-economic literature review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110732. doi: 10.1016/j.rser.2021.110732
    [6] 肖立业, 张京业, 聂子攀, 等. 地下储能工程[J]. 电工电能新技术, 2022, 41(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN202202001.htm

    XIAO L Y, ZHANG J Y, NIE Z P, et al. Underground energy storage engineering[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(2): 1-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN202202001.htm
    [7] FLEUCHAUS P, SCHÜPPLER S, BLOEMENDAL M, et al. Risk analysis of high-temperature aquifer thermal energy storage (HT-ATES)[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110153. doi: 10.1016/j.rser.2020.110153
    [8] SCHOUT G, DRIJVER B, GUTIERREZ-NERI M, et al. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: A Rayleigh-based method[J]. Hydrogeology Journal, 2014, 22(1): 281-291. doi: 10.1007/s10040-013-1050-8
    [9] GHARIBI S, MORTEZAZADEH E, HASHEMI AGHCHEH BODI S J, et al. Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger[J]. Energy, 2018, 153: 554-567. doi: 10.1016/j.energy.2018.04.003
    [10] NIAN Y L, CHENG W L, YANG X Y, et al. Simulation of a novel deep ground source heat pump system using abandoned oil wells with coaxial BHE[J]. International Journal of Heat and Mass Transfer, 2019, 137: 400-412. doi: 10.1016/j.ijheatmasstransfer.2019.03.136
    [11] KUMAR S, FOROOZESH J, EDLMANN K, et al. A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103437. doi: 10.1016/j.jngse.2020.103437
    [12] RINGROSE P S, FURRE A K, GILFILLAN S M V, et al. Storage of carbon dioxide in saline aquifers: Physicochemical processes, key constraints, and scale-up potential[J]. Annual Review of Chemical and Biomolecular Engineering, 2021, 12: 471-494. doi: 10.1146/annurev-chembioeng-093020-091447
    [13] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968. doi: 10.3321/j.issn:1000-6915.2006.05.015

    LI X C, LIU Y F, BAI B, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.05.015
    [14] 赵华伟, 廉培庆, 易杰, 等. 基于数字岩心技术的岩石孔渗特征研究: 以海外J油田孔隙型碳酸盐岩油藏为例[J]. 地质科技通报, 2023, 42(2): 347-355. doi: 10.19509/j.cnki.dzkq.tb20210522

    ZHAO H W, LIAN P Q, YI J, et al. A study of petrophysical properties based on digital core technology: A case study of a porous carbonate reservoir in the overseas J oilfield[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 347-355. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210522
    [15] 罗家群, 张永华, 谢春安, 等. 泌阳凹陷下二门地区核桃园组油气成藏再认识[J]. 地质科技通报, 2022, 41(3): 1-8. doi: 10.19509/j.cnki.dzkq.2022.0072

    LUO J Q, ZHANG Y H, XIE C A, et al. Re-understanding on hydrocarbon accumulation of the Hetaoyuan Formation in Xiaermen area of the Biyang Depression[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 1-8. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0072
    [16] 任韶然, 崔国栋, 李德祥, 等. 注超临界CO2开采高温废弃气藏地热机制与采热能力分析[J]. 中国石油大学学报(自然科学版), 2016, 40(2): 91-98. doi: 10.3969/j.issn.1673-5005.2016.02.011

    REN S R, CUI G D, LI D X, et al. Development of geothermal energy from depleted high temperature gas reservoir via supercritical CO2 injection[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2): 91-98. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-5005.2016.02.011
    [17] 汤勇, 杜志敏, 张哨楠, 等. 高温气藏近井带地层水蒸发和盐析研究[J]. 西南石油大学学报, 2007, 29(2): 96-99. doi: 10.3863/j.issn.1674-5086.2007.02.026

    TANG Y, DU Z M, ZHANG S N, et al. Formation water vaporization and salt out at near well bore zone in high temperature gas reservoir[J]. Journal of Southwest Petroleum University, 2007, 29(2): 96-99. (in Chinese with English abstract) doi: 10.3863/j.issn.1674-5086.2007.02.026
    [18] 杨树合, 王树红, 王连敏, 等. 裂缝性潜山凝析气藏评价与开发: 以千米桥潜山凝析气藏为例[J]. 天然气地球科学, 2006, 17(6): 857-861. doi: 10.3969/j.issn.1672-1926.2006.06.026

    YANG S H, WANG S H, WANG L M, et al. Evaluation and development of fractured buried hill condensate gas reservoir: Taking Qianmiqiao buried hill condensate gas reservoir as an example[J]. Natural Gas Geoscience, 2006, 17(6): 857-861. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1926.2006.06.026
    [19] 刘国政. 二氧化碳驱前缘运移及气窜规律模拟研究[D]. 山东青岛: 中国石油大学(华东), 2021.

    LIU G Z. Simulation study on migration and gas channeling of CO2 flooding front[D]. Qingdao Shandong: China University of Petroleum (East China), 2021. (in Chinese with English abstract)
    [20] 王宇. 致密储层气驱提高采收率研究[D]. 北京: 中国石油大学(北京), 2022.

    WANG Y. Study on enhanced oil recovery by gas flooding in tight reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2022. (in Chinese with English abstract)
    [21] 华溱, 刘东东, 张昂昂, 等. 高含水油藏注气提高采收率室内研究[J]. 能源化工, 2023, 44(3): 55-59. doi: 10.3969/j.issn.1006-7906.2023.03.012

    HUA Q, LIU D D, ZHANG A A, et al. Study on gas injection for enhanced oil recovery in high water cut reservoirs[J]. Energy Chemical Industry, 2023, 44(3): 55-59. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7906.2023.03.012
    [22] FLEUCHAUS P, GODSCHALK B, STOBER I, et al. Worldwide application of aquifer thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 861-876. doi: 10.1016/j.rser.2018.06.057
    [23] HOLSTENKAMP L, MEISEL M, NEIDIG P, et al. Interdisciplinary review of medium-deep aquifer thermal energy storage in North Germany[J]. Energy Procedia, 2017, 135: 327-336. doi: 10.1016/j.egypro.2017.09.524
    [24] LI Y, YU H, TANG D, et al. A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods[J]. Renewable Energy, 2022, 187: 1130-1153. doi: 10.1016/j.renene.2022.02.036
    [25] TEMPLETON J D, GHOREISHI-MADISEH S A, HASSANI F, et al. Abandoned petroleum wells as sustainable sources of geothermal energy[J]. Energy, 2014, 70: 366-373. doi: 10.1016/j.energy.2014.04.006
    [26] WIGHT N M, BENNETT N S. Geothermal energy from abandoned oil and gas wells using water in combination with a closed wellbore[J]. Applied Thermal Engineering, 2015, 89: 908-915. doi: 10.1016/j.applthermaleng.2015.06.030
    [27] CAULK R A, TOMAC I. Reuse of abandoned oil and gas wells for geothermal energy production[J]. Renewable Energy, 2017, 112: 388-397. doi: 10.1016/j.renene.2017.05.042
    [28] NOOROLLAHI Y, POURARSHAD M, JALILINASRABADY S, et al. Numerical simulation of power production from abandoned oil wells in Ahwaz oil field in southern Iran[J]. Geothermics, 2015, 55: 16-23. doi: 10.1016/j.geothermics.2015.01.008
    [29] ESTEVES A F, SANTOS F M, JOSÉ C M P. Carbon dioxide as geothermal working fluid: An overview[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109331. doi: 10.1016/j.rser.2019.109331
    [30] 李静岩, 刘中良, 周宇, 等. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901009.htm

    LI J Y, LIU Z L, ZHOU Y, et al. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system[J]. CIESC Journal, 2019, 70(1): 72-82. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901009.htm
    [31] 乔宗良, 汤有飞, 王兴超, 等. CO2羽流地热系统开采特性数值模拟及预测模型[J]. 东南大学学报(自然科学版), 2019, 49(4): 764-772. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201904021.htm

    QIAO Z L, TANG Y F, WANG X C, et al. Numerical simulation and predictive model of mining characteristics of CO2 plume geothermal system[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(4): 764-772. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201904021.htm
    [32] 朱慧星, 许天福, 封官宏, 等. 孔渗非均质性对CO2羽流地热系统功能影响数值模拟研究[J]. 太阳能学报, 2017, 38(7): 1814-1821. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201707013.htm

    ZHU H X, XU T F, FENG G H, et al. Numerical modeling of the performance of the CO2-plume geothermal system in a permeability and porosity heterogeneous reservoir[J]. Acta Energiae Solaris Sinica, 2017, 38(7): 1814-1821. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201707013.htm
    [33] NOROUZI A M, BABAEI M, HAN W S, et al. CO2-plume geothermal processes: A parametric study of salt precipitation influenced by capillary-driven backflow[J]. Chemical Engineering Journal, 2021, 425: 130031. doi: 10.1016/j.cej.2021.130031
    [34] EZEKIEL J, ADAMS B M, SAAR M O, et al. Numerical analysis and optimization of the performance of CO2-plume geothermal (CPG) production wells and implications for electric power generation[J]. Geothermics, 2022, 98: 102270 doi: 10.1016/j.geothermics.2021.102270
    [35] 高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073

    GAO Z H, ZHAO R R, CHENG J M. Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: A case study of Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0073
    [36] LIU H, HE Q, BORGIA A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127: 149-159. doi: 10.1016/j.enconman.2016.08.096
    [37] MAJER V, SEDLBAUER J, BERGIN G. Henry's law constant and related coefficients for aqueous hydrocarbons, CO2 and H2S over a wide range of temperature and pressure[J]. Fluid Phase Equilibria, 2008, 272(1/2): 65-74.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  175
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 录用日期:  2024-02-18
  • 修回日期:  2024-01-04

目录

    /

    返回文章
    返回