留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩孔隙压力预测新方法: 以渤海湾盆地渤东凹陷为例

张随随 范昌育 王德英 陈磊 王启明 王震亮 王飞龙 闫昕宇

张随随, 范昌育, 王德英, 陈磊, 王启明, 王震亮, 王飞龙, 闫昕宇. 页岩孔隙压力预测新方法: 以渤海湾盆地渤东凹陷为例[J]. 地质科技通报, 2024, 43(4): 27-38. doi: 10.19509/j.cnki.dzkq.tb20230638
引用本文: 张随随, 范昌育, 王德英, 陈磊, 王启明, 王震亮, 王飞龙, 闫昕宇. 页岩孔隙压力预测新方法: 以渤海湾盆地渤东凹陷为例[J]. 地质科技通报, 2024, 43(4): 27-38. doi: 10.19509/j.cnki.dzkq.tb20230638
ZHANG Suisui, FAN Changyu, WANG Deying, CHEN Lei, WANG Qiming, WANG Zhenliang, WANG Feilong, YAN Xinyu. A new method for predicting shale pore pressure: A case study of the Bodong Depression in the Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 27-38. doi: 10.19509/j.cnki.dzkq.tb20230638
Citation: ZHANG Suisui, FAN Changyu, WANG Deying, CHEN Lei, WANG Qiming, WANG Zhenliang, WANG Feilong, YAN Xinyu. A new method for predicting shale pore pressure: A case study of the Bodong Depression in the Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 27-38. doi: 10.19509/j.cnki.dzkq.tb20230638

页岩孔隙压力预测新方法: 以渤海湾盆地渤东凹陷为例

doi: 10.19509/j.cnki.dzkq.tb20230638
基金项目: 

中海石油天津分公司项目“渤东凹陷油气成藏动力学与有利勘探方向研究” CCL2021TJT0NST0338

详细信息
    作者简介:

    张随随, E-mail: 1779510038@qq.com

    通讯作者:

    范昌育,E-mail:330413776@qq.com

  • 中图分类号: P618.12

A new method for predicting shale pore pressure: A case study of the Bodong Depression in the Bohai Bay Basin

More Information
  • 摘要:

    我国油气勘探正向页岩油气领域挺进, 富含有机质页岩中普遍发育超压, 页岩孔隙压力预测方法的不足制约着页岩油气的研究。分析了生烃增压及欠压实增压的岩石物理响应特征, 基于密度与声速数据对生烃增压及欠压实增压的差异化响应, 建立了一种利用声速、密度数据分别计算页岩生烃增压量及欠压实增压量, 最终实现页岩孔隙压力预测的新方法——声速回弹法。选取生烃条件优越的渤东凹陷作为研究实例, 首先利用综合泥岩压实曲线、加载-卸载曲线、声速-密度图解, 综合判别了超压的成因, 而后利用声速回弹法定量计算了单井欠压实、生烃作用的增压量以及地层孔隙压力, 并将其与数值模拟及常规计算方法进行了对比。以LD21-A井为例, 页岩超压成因为生烃增压与欠压实复合成因; 压力预测结果显示: 非烃源岩层段超压由欠压实增压贡献; 烃源岩层段超压由生烃增压与欠压实贡献, 其中生烃增压量主要分布在5~15 MPa之间(占比约35%~65%), 实测压力点生烃增压量为11.09 MPa (占比45%)。新方法可行性较数值模拟更高, 与Eaton法相比, 不受各层段、区域生烃增压量及欠压实增压量占比不一致的影响。新方法在页岩油气领域及常规油气领域的研究具有重要意义。

     

  • 图 1  生烃增压地质模型(a)及页岩回弹物理模拟实验(b)[5]

    Figure 1.  Geological model of hydrocarbon generation and pressure boosting(a) and physical simulation experiment of shale rebound(b)[5]

    图 2  生烃增压与欠压实测井响应特征

    a.声速-埋深关系;b.密度-埋深关系;c.声速-垂向有效应力关系;d.密度-垂向有效应力关系

    Figure 2.  Response characteristics of hydrocarbon generation enhancement and undercompaction logging

    图 3  渤海湾盆地渤东凹陷位置及地层综合柱状图(据文献[33]修改)

    Figure 3.  Locations and comprehensive stratigraphic bar chart of the Bodong Depression, Bohai Bay Basin

    图 4  渤东凹陷现今压力场垂向分布特征

    Figure 4.  Vertical distribution characteristics of the current pressure in the Bodong Depression

    图 5  渤东凹陷综合泥岩压实曲线(以LD21-A井为例)

    Qp.平原组;N2mU.明化镇组上段;N1mL.明化镇组下段;N1g.馆陶组;E3d.东营组;E2s.沙河街组;下同

    Figure 5.  Comprehensive mudstone compaction curve in the Bodong Depression

    图 6  渤东凹陷加载-卸载曲线(以LD21-A井为例)

    Figure 6.  Loading-unloading curve in the Bodong Depression

    图 7  渤东凹陷声速-密度图解(LD21-A井)

    Figure 7.  Chart of the sound velocity-density in the Bodong Depression

    图 8  渤东凹陷实测声速与密度计算声速对比图(LD21-A井)

    Figure 8.  Comparison of the measured sound velocity and density-calculated sound velocity in the Bodong Depression

    图 9  渤东凹陷及其围区生烃增压量与声速回弹量交会图

    Figure 9.  Intersection diagram of hydrocarbon generation pressure increase and sound velocity rebound in the Bodong Depression and surrounding areas

    图 10  渤东凹陷多种方法压力预测(以LD21-A井为例)

    Figure 10.  Pressure prediction using multiple methods in the Bodong Depression

    表  1  数值模拟法预测地层压力所需参数

    Table  1.   Parameters required for predicting formation pressure using the numerical simulation method

    参数 预测成因 获取难度
    压实系数/km-1 生烃增压、欠压实 简单
    初始孔隙度/% 生烃增压、欠压实 简单
    孔隙度-渗透率关系 欠压实 简单
    初始w(TOC)/% 生烃增压 困难且不准
    初始HI/(mg·g-1) 生烃增压 困难且不准
    原油压缩系数/MPa-1 生烃增压 较难
    原油密度/(kg·m-3) 生烃增压 较难
    干酪根密度/(kg·m-3) 生烃增压 较难
    基底热流 生烃增压 较难
    生烃动力学模型 生烃增压 困难
    下载: 导出CSV

    表  2  声速回弹法(本次所提方法) 预测地层压力所需参数

    Table  2.   Parameters required for predicting formation pressure using the sound velocity rebound method

    参数 来源 获取难度
    声速/(m·s-1) 声波测井 简单
    密度/(g·cm-3) 密度测井 简单
    有效应力/MPa 密度测井、实测压力 比较简单
    下载: 导出CSV

    表  3  Eaton法与声速回弹法(本研究方法) 压力预测误差

    Table  3.   Errores for pressure prediction via the Eaton method and the velocity rebound method

    井位 深度/m 地层压力/MPa 超压成因 压力预测/MPa 相对误差/%
    Eaton法 声速回弹法 Eaton法 声速回弹法
    LD21-A 3 606 60.06 混合成因 58.94 60.16 -1.90 0.17
    PL7-A 3 752 52.96 欠压实成因 64.32 50.61 17.66 -4.64
    LD34-A 2 747 34.99 欠压实成因为主 39.21 35.62 10.76 1.77
    PL14-A 2 828 40.27 混合成因 45.21 42.31 10.93 4.82
    下载: 导出CSV
  • [1] 曾联波, 马诗杰, 田鹤, 等. 富有机质页岩天然裂缝研究进展[J]. 地球科学, 2023, 48(7): 2427-2442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307001.htm

    ZENG L B, MA S J, TIAN H, et al. Research progress of natural fractures in organic rich shale[J]. Earth Science, 2023, 48(7): 2427-2442. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307001.htm
    [2] 周立宏, 陈长伟, 甘华军, 等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报, 2022, 41(5): 19-30. doi: 10.19509/j.cnki.dzkq.2022.0233

    ZHOU L H, CHEN C W, GAN H J, et al. Shale formation environment and comprehensive evaluation of shale oil potential of the Lower First Member of Shahejie Formation in Qikou Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 19-30. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0233
    [3] 辛红刚, 田杨, 冯胜斌, 等. 鄂尔多斯盆地典型夹层型页岩油地质特征及潜力评价: 以宁228井长7段为例[J]. 地质科技通报, 2023, 42(3): 114-124. doi: 10.19509/j.cnki.dzkq.tb20220224

    XIN H G, TIAN Y, FENG S B, et al. Geological characteristics and potential evaluation of typical interlayer shale oil in the Ordos Basin: A case study of the Chang 7 Member of Well Ning228[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 114-124. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220224
    [4] WANG P W, CHEN Z H, HU K Z, et al. The impact of organic pores on estimation of overpressure generated by gas generation in organic-rich shale: Example from Devonian Duvernay Shale, Western Canada Sedimentary Basin[J]. AAPG Bulletin, 2023, 107(9): 1477-1492. doi: 10.1306/12202220005
    [5] BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2): 174-177. doi: 10.1190/1.1452608
    [6] TINGAY M R P, MORLEY C K, LAIRD A, et al. Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J]. AAPG Bulletin, 2013, 97(4): 639-672. doi: 10.1306/09041212032
    [7] TINGAY M R P, HILLIS R R, SWARBRICK R E, et al. Origin of overpressure and pore-pressure prediction in the Baram Province, Brunei[J]. AAPG Bulletin, 2009, 93(1): 51-74. doi: 10.1306/08080808016
    [8] HOTTMAN C E, JOHNSON R K. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology, 1965, 17(6): 717-722. doi: 10.2118/1110-PA
    [9] LIMPORNPIPAT O, LAIRD A, TINGAY M R, et al. Overpressures in the northern Malay Basin: Part 2-Implications for pore pressure prediction[C]//Anon. International Petroleum Technology Conference, 2012: IPIC-15350-MS.
    [10] EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929-934. doi: 10.2118/3719-PA
    [11] SUWANNASRI K, PROMRAK W, UTITSAN S, et al. Reducing the variation of Eaton's exponent for overpressure prediction in a basin affected by multiple overpressure mechanisms[J]. Interpretation, 2014, 2(1): SB57-SB68. doi: 10.1190/INT-2013-0100.1
    [12] HANTSCHEL T, KAUERAUF A I. Fundamentals of basin and petroleum systems modeling[M]. Berlin, Heidelberg: Springer, 2009.
    [13] LI C, ZHANG L K, LUO X R, et al. Overpressure generation by disequilibrium compaction or hydrocarbon generation in the Paleocene Shahejie Formation in the Chezhen Depression: Insights from logging responses and basin modeling[J]. Marine and Petroleum Geology, 2021, 133: 105258. doi: 10.1016/j.marpetgeo.2021.105258
    [14] VAN RUTH P, HILLIS R, TINGATE P. The origin of overpressure in the Carnarvon Basin, Western Australia: Implications for pore pressure prediction[J]. Petroleum Geoscience, 2004, 10(3): 247-257. doi: 10.1144/1354-079302-562
    [15] 王震亮, 孙明亮, 耿鹏, 等. 准南地区异常地层压力发育特征及形成机理[J]. 石油勘探与开发, 2003, 30(1): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200301012.htm

    WANG Z L, SUN M L, GENG P, et al. The development features and formation mechanisms of abnormal high formation pressure in southern Junggar region[J]. Petroleum Exploration and Development, 2003, 30(1): 32-34. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200301012.htm
    [16] 陈荷立. 泥岩压实资料在油气勘探构造研究中的应用[J]. 石油勘探与开发, 1980, 7(5): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198005001.htm

    CHEN H L. Application of mudstone compaction data in structural research of oil and gas exploration[J]. Petroleum Exploration and Development, 1980, 7(5): 16-24. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198005001.htm
    [17] 郭小文, 何生, 郑伦举, 等. 生油增压定量模型及影响因素[J]. 石油学报, 2011, 32(4): 637-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104013.htm

    GUO X W, HE S, ZHENG L J, et al. A quantitative model for the overpressure caused by oil generation and its influential factors[J]. Acta Petrolei Sinica, 2011, 32(4): 637-644. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104013.htm
    [18] LIU J D, LIU T, LIU H, et al. Overpressure caused by hydrocarbon generation in the organic-rich shales of the Ordos Basin[J]. Marine and Petroleum Geology, 2021, 134: 105349. doi: 10.1016/j.marpetgeo.2021.105349
    [19] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998.

    ZHAO J Z, LI J, XU Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998. (in Chinese with English abstract)
    [20] 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm

    BORJIGIN T, LU L F, YU L J, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm
    [21] SMITH J E. The dynamics of shale compaction and evolution of pore-fluid pressures[J]. Mathematical Geology, 1971, 3(3): 239-263. doi: 10.1007/BF02045794
    [22] FAN C Y, WANG G. The significance of a piecemeal geometric model of mudstone compaction: Pinghu Slope, Xihu Depression, eastern China[J]. Marine and Petroleum Geology, 2021, 131: 105138. doi: 10.1016/j.marpetgeo.2021.105138
    [23] 侯志强, 张书平, 李军, 等. 西湖凹陷中部西斜坡地区超压成因机制[J]. 石油学报, 2019, 40(9): 1059-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909004.htm

    HOU Z Q, ZHANG S P, LI J, et al. Genetic mechanism of overpressures in the west slope of central Xihu Sag[J]. Acta Petrolei Sinica, 2019, 40(9): 1059-1068. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909004.htm
    [24] 张凤奇, 孙越, 刘思瑶, 等. 构造抬升区泥页岩脆性破裂泄压特征及对页岩油富集的影响: 以延安地区延长组长73亚段为例[J]. 石油实验地质, 2023, 45(5): 936-951. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202305011.htm

    ZHANG F Q, SUN Y, LIU S Y, et al. Characteristics of pressure relief induced by shale brittle fracture in tectonic uplift area and its influence on shale oil enrichment: A case study of Chang 73 sub-member of Yanchang Formation in Yan'an area[J]. Petroleum Geology and Experiment, 2023, 45(5): 936-951. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202305011.htm
    [25] LUO Y, LIU H P, ZHAO Y C, et al. Reevaluation of the origin of overpressure in the inter-salt shale-oil reservoir in Liutun Sag, Dongpu Depression, China[J]. Journal of Petroleum Science and Engineering, 2016, 146: 1092-1100.
    [26] BOWERS G L. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling&Completion, 1995, 10(2): 89-95.
    [27] FAN C Y, WANG Z L, WANG A G, et al. Identification and calculation of transfer overpressure in the northern Qaidam Basin, Northwest China[J]. AAPG Bulletin, 2016, 100(1): 23-39.
    [28] 陈荷立, 崔荫松, 宋国初. 临河坳陷泥岩压实与油气运聚条件研究[J]. 石油学报, 1993, 14(2): 32-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199302003.htm

    CHEN H L, CUI Y S, SONG G C. A study of mudstone compaction and condition of hydrocarbon migration and accumulation in the Linhe Depression[J]. Acta Petrolei Sinica, 1993, 14(2): 32-43. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199302003.htm
    [29] 韩晓洁, 范昌育, 高潮, 等. 构造抬升区欠压实超压恢复方法: 以鄂尔多斯盆地下寺湾地区延长组为例[J]. 天然气地球科学, 2023, 34(7): 1163-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202307012.htm

    HAN X J, FAN C Y, GAO C, et al. Restoration method of disequilibrium compaction overpressure in tectonically uplifted area: A case study of Yanchang Formation in Xiasiwan area, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(7): 1163-1172. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202307012.htm
    [30] BOWERS G L, JOHN KATSUBE T. The role of shale pore structure on the sensitivity of wire-line logs to overpressure[J]. AAPG Memoir, 2002, 76: 43-60.
    [31] 张旭友, 范彩伟, 郭小文, 等. 莺歌海盆地中央底辟带乐东区莺歌海组超压成因及相对贡献定量化评价[J/OL]. 地球科学: (2023-11-04)[2024-01-09] http://kns.cnki.net/kcms/detail/42.1874.P.20220217.1915.031.html.

    ZHANG X Y, FAN C W, GUO X W, et al. Overpressure mechanisms and quantitative evaluation of the relative contribution for Yinggehai Formation in Ledong area of the Central Diapir Zone, Yinggehai Basin[J/OL]. Earth Scinece: (2023-11-04)[2024-01-09] http://kns.cnki.net/kcms/detail/42.1874.P.20220217.1915.031.html. (in Chinese with English abstract)
    [32] TERZAGHI K. Theoretical soil mechanics[M]. Hoboken: John Wiley&Sons, Inc., 1943.
    [33] 郭喜浩, 徐昉昊, 黄晓波, 等. 基于多元统计分析的油-源对比: 以渤海湾盆地渤东凹陷为例[J]. 石油与天然气地质, 2022, 43(5): 1259-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205020.htm

    GUO X H, XU F H, HUANG X B, et al. Oil-source correlation based on multivariate statistical analysis: A case study of the Bodong Sag, Bohai Bay Basin[J]. Oil&Gas Geology, 2022, 43(5): 1259-1270. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205020.htm
    [34] 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm

    XU C G, YU H B, WANG J, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25-38. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
    [35] 李宏义, 刘丽芳, 吴克强, 等. 渤海海域渤东凹陷烃源岩特征与勘探潜力[J]. 地质科技情报, 2015, 34(6): 131-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506018.htm

    LI H Y, LIU L F, WU K Q, et al. Characteristics of source rocks and exploration potential in Bodong Sag, Bohai Sea area[J]. Geological Science and Technology Information, 2015, 34(6): 131-135. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506018.htm
    [36] 李伟, 陈竹新, 黄平辉, 等. 中国中西部典型前陆盆地超压体系形成机制与大气田关系[J]. 石油勘探与开发, 2021, 48(3): 536-548. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103010.htm

    LI W, CHEN Z X, HUANG P H, et al. Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China[J]. Petroleum Exploration and Development, 2021, 48(3): 536-548. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103010.htm
    [37] 李超, 张立宽, 罗晓容, 等. 泥岩压实研究中有机质导致声波时差异常的定量校正方法[J]. 中国石油大学学报(自然科学版), 2016, 40(3): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201603010.htm

    LI C, ZHANG L K, LUO X R, et al. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(3): 77-87. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201603010.htm
    [38] 王刚, 范昌育, 李子龙, 等. 强挤压型盆地最大埋深期泥岩压实重建及其油气地质意义: 以库车前陆盆地为例[J]. 天然气工业, 2021, 41(10): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202110008.htm

    WANG G, FAN C Y, LI Z L, et al. Reconstruction of mudstone compaction in the maximum burial depth period of strongly compressional basin and its petroleum geological implications: Take the Kuqa foreland basin as an example[J]. Natural Gas Industry, 2021, 41(10): 29-38. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202110008.htm
    [39] LUO X R, VASSEUR G. Geopressuring mechanism of organic matter cracking: Numerical modeling[J]. AAPG Bulletin, 1996, 80(6): 856-873.
    [40] BERG R R, GANGI A F. Primary migration by oil-generation microfracturing in low-permeability source rocks: Application to the Austin Chalk, Texas[J]. AAPG Bulletin, 1999, 83(5): 727-756.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  173
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-15
  • 录用日期:  2024-01-03
  • 修回日期:  2023-12-26

目录

    /

    返回文章
    返回