留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干热岩开发循环试验的研究进展和发展建议

王丹 文冬光 杨用彪 杨伟峰 金显鹏 吴斌

王丹,文冬光,杨用彪,等. 干热岩开发循环试验的研究进展和发展建议[J]. 地质科技通报,2025,0(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20230644
引用本文: 王丹,文冬光,杨用彪,等. 干热岩开发循环试验的研究进展和发展建议[J]. 地质科技通报,2025,0(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20230644
WANG Dan,WEN Dongguang,YANG Yongbiao,et al. International Research Progress and Development Suggestions of Hot Dry Rock EGS Flow Test[J]. Bulletin of Geological Science and Technology,2025,0(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20230644
Citation: WANG Dan,WEN Dongguang,YANG Yongbiao,et al. International Research Progress and Development Suggestions of Hot Dry Rock EGS Flow Test[J]. Bulletin of Geological Science and Technology,2025,0(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20230644

干热岩开发循环试验的研究进展和发展建议

doi: 10.19509/j.cnki.dzkq.tb20230644
基金项目: 江苏省碳达峰碳中和科技创新专项资金项目(BE2022859)
详细信息
    通讯作者:

    E-mail:2292060849@qq.com

International Research Progress and Development Suggestions of Hot Dry Rock EGS Flow Test

More Information
  • 摘要:

    干热岩是一种开发前景广阔的地热资源。增强型地热系统是当前干热岩开发的主要方式,需要通过多个工程环节衔接实施,循环试验是其中的重要步骤。循环试验实施过程具有长期性和复杂性的特点,亟需技术突破降本增效。简要总结了国内外较为典型的干热岩开发EGS工程的循环试验经验和探索方向,阐述了多种因素对于循环试验的影响,并结合青海共和场地的实际情况提出了发展建议。可以看出,以往提高循环试验效果主要是通过开发层位及井组调整、长期循环、储层改造以及化学刺激等方法实现的,而当前技术人员主要通过改进准确获取工程参数的方法,以及改进注采井组设计和储层改造工艺进行探索。循环试验的方案制定需要充分考虑地质因素,且数值模拟、储层刺激、流程设计、工程实施等方面都值得进行深入研究。随着开发技术的日趋成熟,干热岩地热资源将会成为我国能源结构中的重要一环,为经济发展和环境保护发挥重要的作用。

     

  • 图 1  Fenton Hill EGS工程循环注采井示意图(据文献[22]修编)

    EE-2,EE-3,EE-3A和EE-2A均为注采井,其中EE-3A和EE-2A分别为在EE-2和EE-3基础上侧钻的井,原因是原井连通不佳,因此改变井轨迹去增大连通概率;注入区域为虚线圈闭起来的范围;箭头为注入流体的流动方向

    Figure 1.  Schematic diagram of Fenton Hill EGS flow test well group

    图 2  Soultz EGS工程场地循环注采井分布示意图(据文献[28]修编)

    Figure 2.  Schematic diagram of Soultz EGS flow test well group

    图 3  Habanero EGS工程场地循环注采井分布(据文献[39]修编)

    Figure 3.  Schematic diagram of Habanero EGS flow test well group

    图 4  Hijiori EGS工程场地循环注采井分布(据文献[47]修编)

    HDR-2和HDR-3均为生产井;SKG-2和HDR-1均为注水井;HDR2A为HDR2的加深井,1994年HDR-2堵塞深度约为1600 m,然后加深至2303 m;黑色垂直带为井套管;白色垂直区域为无套管井筒。

    Figure 4.  Schematic diagram of Hijiori EGS flow test well group

    图 5  2019年区域2注入测试期间单次(循环5)的压力−排量曲线(据文献[54]修编)

    Figure 5.  Pressure curve for a single cycle (cycle 5) during injection testing in region 2 in 2019

    图 6  Fervo EGS工程场地循环注采井分布示意图(据文献[58]修编;1 ft=0.3048 m)

    Figure 6.  Schematic diagram of Fervo EGS flow test well group

    图 7  共和场地压裂注采期间注入井施工排量与压力变化趋势图(据文献[60]修编)

    Figure 7.  Trend chart of rate and pressure changes of injection well during flow test at Gonghe site

    表  1  典型干热岩EGS工程稳定层位循环试验参数汇总

    Table  1.   Summary Table of Stable Layer Flow Test Parameters for Typical Hot Dry Rock EGS Engineering

    名称 循环方量/m3 回收率 持续时
    间/天
    循环井组 井间距/m 最大注入
    流量/LS−1
    最大生产
    流量/LS−1
    井口压力
    (注)/MPa
    井口压力
    (采)/MPa
    液体井口
    温度/℃
    结垢控制
    Fenton HillPhase Ⅱ 1986.5.19−6.18 37000 62.8% 30 1注1采 约400 18.3 13.5 31.5 3.4 190 生产井压力保持
    在10 MPa左右
    1991.12−1992.3 估算270000左右 水损失率稳定
    在7%左右
    18 1注1采 7.2 6.4 25.9 10.3 180
    1992.4.8−7.31 112 1注1采 6.76 5.66 27.29 9.66 183
    1992.8−1993.2 205 1注1采 7.14 5.71 27.32 12.40 182.8
    1993.2.22−4.15 55 1注1采 6.50 5.71 27.34 9.65 184
    1995.5.10−7.14 66 1注1采 7.6 5.9 27.3 15.2 181
    SoultzLevel Ⅲ 2008.7−8 62000 循环水中有地层
    卤水成分,难以判别
    40 1注2采 约600 31 31 7.3 1.8 将生产井压力
    保持在2 MPa左右
    2008.11−12 63000 40 1注2采 27 17 8.6 1.8
    2009.3−2009.10 285000 230 2注2采 20 22 6.8 2
    2009.11−2010.10 500000 323 2注1采 15 18 5 1.8
    2011.1−4 165000 90 2注1采 11 22 1.8 1.9
    2011.8−10 135000 70 2注1采 12 23 1.6 2
    2012.3−4 30000 31 3注1采 12 21 1.5 2
    2013.1−7 200000 180 3注1采 12 15 0.6 2
    Cooper Basin 2008.12−2009.2 61000 71 1注1采 570 15.4 212
    2013.4−2013.10 182000 91% 161 1注1采 690 18.9 215
    Hijiori 2000.11.27−2001.11.15 484203 43% 354 1注2采 130 20.0 10-7 130 结垢严重。扩孔
    消除水垢
    2001.11.23−2002.4.28 310733 54% 157 2注2采 130 16.7 2-4
    2002.6.1−2002.8.31 92 2注2采 130 16.7 1
    下载: 导出CSV
  • [1] 张二勇. 干热岩资源调查与勘查试采示范工程简介[J]. 中国地质,2022,49(2):350.

    ZHANG E Y. Introduction to the demonstration project of investigation and exploration of hot dry rock resources[J]. China Geology,2022,49(2):350. (in Chinese with English abstract
    [2] 蔺文静,刘志明,马峰,等. 我国陆区干热岩资源潜力估算[J]. 地球学报,2012,33(5):807-811. doi: 10.3975/cagsb.2012.05.12

    LIN W J,LIU Z M,MA F,et al. An estimation of HDR resources in China's mainland[J]. Acta Geoscientica Sinica,2012,33(5):807-811. (in Chinese with English abstract doi: 10.3975/cagsb.2012.05.12
    [3] 蔺文静,王贵玲,邵景力,等. 我国干热岩资源分布及勘探:进展与启示[J]. 地质学报,2021,95(5):16.

    LIN W J,WANG G L,SHAO J L,et al. Distribution and exploration of hot dry rock resources in China:Progress and enlightenment[J]. Acta Geologica Sinica,2021,95(5):16. (in Chinese with English abstract
    [4] 赵宏,伍浩松. 世界地热发电产业概况[J]. 国外核新闻,2017(12):18-22.

    ZHAO H,WU H S. Overview of the world geothermal power generation industry[J]. Foreign Nuclear News,2017(12):18-22. (in Chinese with English abstract
    [5] 黄嘉超,李天舒,谷雪曦. 国际地热利用发展形势对中国的启发[J]. 石化技术,2020,27(9):252-253. doi: 10.3969/j.issn.1006-0235.2020.09.151

    HUANG J C,LI T S,GU X X. Enlightenment of the development situation of international geothermal utilization to China[J]. Petrochemical Industry Technology,2020,27(9):252-253. (in Chinese with English abstract doi: 10.3969/j.issn.1006-0235.2020.09.151
    [6] 许天福,袁益龙,姜振蛟,等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版),2016,46(4):1139-1152.

    XU T F,YUAN Y L,JIANG Z J,et al. Hot dry rock and enhanced geothermal engineering:International experience and China prospect[J]. Journal of Jilin University (Earth Science Edition),2016,46(4):1139-1152. (in Chinese with English abstract
    [7] 毛翔,国殿斌,罗璐,等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评,2019,65(6):1462-1472.

    MAO X,GUO D B,LUO L,et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review,2019,65(6):1462-1472. (in Chinese with English abstract
    [8] 宋先知. 从传统地热能到增强型地热系统[J]. 国际学术动态,2020(2):2.

    SONG X Z. From traditional geothermal energy to enhanced geothermal systems[J]. International Academic Trends,2020(2):2. (in Chinese with English abstract
    [9] 亢方超,唐春安,李迎春,等. 增强地热系统研究现状:挑战与机遇[J]. 工程科学学报,2022,44(10):1767-1777. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210014

    KANG F C,TANG C A,LI Y C,et al. Challenges and opportunities of enhanced geothermal systems:A review[J]. Chinese Journal of Engineering,2022,44(10):1767-1777. (in Chinese with English abstract doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210014
    [10] ZHANG Y L,ZHAO G F. A global review of deep geothermal energy exploration:From a view of rock mechanics and engineering[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2019,6(1):4.
    [11] 许天福,胡子旭,李胜涛,等. 增强型地热系统:国际研究进展与我国研究现状[J]. 地质学报,2018,92(9):1936-1947. doi: 10.3969/j.issn.0001-5717.2018.09.012

    XU T F,HU Z X,LI S T,et al. Enhanced geothermal system:International progresses and research status of China[J]. Acta Geologica Sinica,2018,92(9):1936-1947. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2018.09.012
    [12] 那金,许天福,吴永东,等. 增强型地热系统(EGS)土酸化学刺激剂对热储层的改造[J]. 中南大学学报(自然科学版),2017,48(1):247-254. doi: 10.11817/j.issn.1672-7207.2017.01.033

    NA J,XU T F,WU Y D,et al. Effectiveness of using mud acid as stimulation agent for enhanced geothermal systems(EGS) reservoir[J]. Journal of Central South University (Science and Technology),2017,48(1):247-254. (in Chinese with English abstract doi: 10.11817/j.issn.1672-7207.2017.01.033
    [13] 窦斌,高辉,周刚,等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报,2014,33(5):208-210.

    DOU B,GAO H,ZHOU G,et al. Opportunities and challenges of developing enhance geothermal system technology in China[J]. Geological Science and Technology Information,2014,33(5):208-210. (in Chinese with English abstract
    [14] 王贵玲,马峰,蔺文静,等. 干热岩资源开发工程储层激发研究进展[J]. 科技导报,2015,33(11):103-107.

    WANG G L,MA F,LIN W J,et al. Reservoir stimulation in hot dry rock resource development[J]. Science & Technology Review,2015,33(11):103-107. (in Chinese with English abstract
    [15] 王贵玲,陆川. 碳中和目标驱动下干热岩和增强型地热系统增产技术发展[J]. 地质与资源,2023,32(1):85-95.

    WANG G L,LU C. Stimulation technology development of hot dry rock and enhanced geothermal system driven by carbon neutrality target[J]. Geology and Resources,2023,32(1):85-95. (in Chinese with English abstract
    [16] BROWN D W,DUCHANE D V. Scientific progress on the Fenton Hill HDR project since 1983[J]. Geothermics,1999,28(4/5):591-601.
    [17] NORBECK J H,MCCLURE M W,HORNE R N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation[J]. Geothermics,2018,74:135-149. doi: 10.1016/j.geothermics.2018.03.003
    [18] RINALDI A P,RUTQVIST J. Joint opening or hydroshearing? Analyzing a fracture zone stimulation at Fenton Hill[J]. Geothermics,2019,77:83-98. doi: 10.1016/j.geothermics.2018.08.006
    [19] KELKAR S,WOLDEGABRIEL G,REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill,USA[J]. Geothermics,2016,63:5-14. doi: 10.1016/j.geothermics.2015.08.008
    [20] BROWN D W. Hot dry rock geothermal energy:Important lessons from Fenton Hill[J]. Thirty-Fourth Workshop on Geothermal Reservoir Engineering,2009:3-6.
    [21] ZIAGOS J,PHILLIPS B,BOYD L,et al. A technology roadmap for strategic development of enhanced geothermal systems[C]//Anon. Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2013:17123116.
    [22] DUCHANE D. International programs in hot dry rock technology development[J]. Geotherm. Resour. Counc. Bull.,1991,20(5):135-142.
    [23] BROWN D W,DUCHANE D V,HEIKEN G,et al. Mining the earth's heat:Hot dry rock geothermal energy[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,2012.
    [24] BARIA R,BAUMGäRTNER J,GéRARD A,et al. European HDR research programme at Soultz-sous-Forêts(France)1987-1996[J]. Geothermics,1999,28(4):655-669.
    [25] BARIA R,BAUMGAERTNER J,GERARD A,et al. European HDR geothermal research programme,1998-2001,EU final report ,Contractno (JOR3-CT98-0313),2001.
    [26] VALLEY B,DEZAYES C,GENTER A. Multi-scale fracturing in the Soultz-sous-Forêts basement from borehole images analyses[C]//Anon. Soultz Sei-entific Meeting. Orleans:Geothermal Energy Division,2007.
    [27] BARIA R,MICHELET S,BAUMGAERTNER J,et al. Microseismic monitoring of the world's largest potential HDR reservoir[C]/Anon. Twenty Ninth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2004.
    [28] DEZAYES C ,CENTER A ,GENTIER S. Fracture network of the EGS geothermal reservoir at SouItz-sous-Forêts (Rhine Graben,France)[J]. Transactions-Geothermal Resources Council,2004,28:213-218.
    [29] BAUMGRTNER J,GÉRARD A,BARIA R,et al. Circulating the HDR reservoir at Soultz:Maintaining production and injection flow in complete balance[C]//Anon. Twenty-third Workshop on Geothermal Reservoir Engineering. [S. 1. ]:[s. n. ],1998.
    [30] GENTER A,EVANS K,CUENOT N,et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience,2010,342(7/8):502-516.
    [31] HELD S,GENTER A,KOHL T,et al. Economic evaluation of geothermal reservoir performance through modeling the complexity of the operating EGS in Soultz-sous-Forêts[J]. Geothermics,2014,51:270-280. doi: 10.1016/j.geothermics.2014.01.016
    [32] SCHILL E,GENTER A,CUENOT N,et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests[J]. Geothermics,2017,70:110-124. doi: 10.1016/j.geothermics.2017.06.003
    [33] CUENOT N,DORBATH C,DORBATH L. Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts (Alsace,France):Implications for the characterization of the geothermal reservoir properties[J]. Pure and Applied Geophysics,2008,165(5):797-828. doi: 10.1007/s00024-008-0335-7
    [34] GENTER A,FRITSCH D,CUENOT N,et al. Overview of the current activities of the European Egs Soultz project:From exploration to electricity production[C]//Anon. Thirty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2009:11590911.
    [35] CHARLéTY J,CUENOT N,DORBATH L,et al. Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(8):1091-1105. doi: 10.1016/j.ijrmms.2007.06.003
    [36] BENDALL B,HOGARTH R,HOLL H,et al. Australian experiences in EGS permeability enhancement:A review of 3 case studies[C]//Anon. Thirty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2014.
    [37] WYBORN D. Update of development of the geothermal field in the granite at Innamincka,south Australia[C]//Anon. World Geothermal Congress. Ba-li:Geodynamics Limited,2010:59373939.
    [38] KAIEDA H,SASAKI S,WYBORN D. Comparison of characteristics of micro-earthquakes observed during hydraulic stimulation operations in Ogachi,Hijiori and Cooper Basin HDR projects[C]//Anon. Proceedings of the World Geothermal Congress. [S. l. ]:[s. n. ]:2010.
    [39] LLANOS E M,ZARROUK S J,HOGARTH R A. Numerical model of the Habanero geothermal reservoir,Australia[J]. Geothermics,2015,53:308-319. doi: 10.1016/j.geothermics.2014.07.008
    [40] HOGARTH R,HOLL H,MCMAHON A. Flow testing results from Habanero EGS project[C]//Anon. Australian Geothermal Energy Conference. [S. 1. ]:[s. n. ],2013.
    [41] AYLING B F,HOGARTH R A,ROSE P E. Tracer testing at the Habanero EGS site,central Australia[J]. Geothermics,2016,63:15-26. doi: 10.1016/j.geothermics.2015.03.008
    [42] YANAGISAWA N,NGOTHAI Y,ROSE P,et al. Geochemical behavior of EGS reservoir during first circulation test at Habanero site,Cooper Basin,Australia[J]. Journal of the Geothermal Research Society of Japan,2011,33(3):125-130.
    [43] CHEN D,WYBORN D. Habanero Field Tests in the Cooper Basin,Australia:A Proof-of-Concept for EGS[C]//Anon. Geothermal Resources Council Annual Meeting. [S. 1. ]:[s. n. ],2009.
    [44] Yamaguchi T ,Ito T ,Itoi R ,et al. Review of the Hijiori HDR project :Circulation and Heat Extraction[J]. 日本地熱学会学術講演会講演要旨集,2004.
    [45] YANAGISAWA N,MATSUNAGA I,SUGITA H,et al. Reservoir evaluation by tracer tests during a long term circulation test at the Hijiori HDR test field,Yamagata,Japan[J]. Journal of the Geothermal Research Society of Japan,2006,28(1):57-76.
    [46] TENMA N,YAMAGUCHI T,ZYVOLOSKI G. The Hijiori Hot Dry Rock test site,Japan:Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics,2008,37(1):19-52. doi: 10.1016/j.geothermics.2007.11.002
    [47] SWENSON D,SCHROEDER R,SHINOHARA N,et al. Analyses of the hijiori long term circulation test[C]//Anon. Twenty Fourth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,1999:27554763.
    [48] TENMA N,YAMAGUCHI T,OIKAWA Y,et al. Comparison of the deep and the shallow reservoirs at the Hijiori HDR test site using FEHM code [C]//Anon. Twenty Sixth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2001.
    [49] YAMAGUCHI S,AKIBAYASHI S,ROKUGAWA S,et al. The numerical modeling study of the Hijiori HDR test site[C]//Anon. World Geothermal Congress. Kyushu,Tohoku:Akita University,2000.
    [50] ITO T,HAYASHI K. Role of stress-controlled flow pathways in HDR geothermal reservoirs[J]. Pure and Applied Geophysics,2003,160(5/6):1103-1124.
    [51] 解经宇,王丹,李宁,等. 干热岩压裂建造人工热储发展现状及建议[J]. 地质科技通报,2022,41(3):321-329.

    XIE J Y,WANG D,LI N,et al. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology,2022,41(3):321-329. (in Chinese with English abstract
    [52] 解经宇,陆洪智,陈磊,等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报,2021,40(3):67-77.

    XIE J Y,LU H Z,CHEN L,et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology,2021,40(3):67-77. (in Chinese with English abstract
    [53] BONNEVILLE A ,CLADOUHOS T T ,SCHULTZ A. Establishing the frontier observatory for research in geothermal energy (FORGE) on the Newberry Volcano,Oregon[C]//Anon. 41st Workshop on Geothermal Reservoir Engineering. [S. 1. ]:[s. n. ],2016.
    [54] RIAHI A,PETTITT W,DAMJANAC B,et al. Numerical modeling of discrete fractures in a field-scale FORGE EGS reservoir[J]. Rock Mechanics and Rock Engineering,2019,52(12):5245-5258. doi: 10.1007/s00603-019-01894-6
    [55] ALLIS R,MOORE J,DAVATZES N,et al. EGS concept testing and development at the Milford,Utah FORGE site[C]//Anon. Workshop on Geothermal Reservoir Engineering. [S. 1. ]:[s. n. ],2016.
    [56] XING P J,DAMJANAC B,MOORE J,et al. Flowback test analyses at the Utah Frontier Observatory for research in geothermal energy (FORGE) site[J]. Rock Mechanics and Rock Engineering,2022,55(5):3023-3040. doi: 10.1007/s00603-021-02604-x
    [57] 张森琦, 文冬光, 许天福, 等. 美国干热岩"地热能前沿瞭望台研究计划"与中美典型EGS场地勘查现状对比[J]. 地学前缘, 2019, 26(2): 321-334.

    ZHANG S Q, WEN D G, XU T F, et al. The U. S. Frontier Observatory For Research in Geothermal Energy project and comparison of typical EGS site exploration status in China and U. S.[J]. Earth Science Frontiers, 2019, 26(2): 321-334. (in Chinese with English abstract)
    [58] NORBECK J,LATIMER T. Commercial-scale demonstration of a first-of-a-kind enhanced geothermal system[J]. EarthArXiv Eprints,2023:X52X0B.
    [59] 张森琦,付雷,张杨,等. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业,2020,40(9):156-169. doi: 10.3787/j.issn.1000-0976.2020.09.019

    ZHANG S Q,FU L,ZHANG Y,et al. Delineation of target areas for hot dry rock exploration in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natural Gas Industry,2020,40(9):156-169. (in Chinese with English abstract doi: 10.3787/j.issn.1000-0976.2020.09.019
    [60] 严维德. 共和盆地干热岩特征及利用前景[J]. 科技导报,2015,33(19):54-57.

    YAN W D. Characteristics and utilization prospects of hot dry rocks in the Gonghe Basin[J]. Science and Technology Review,2015,33(19):54-57. (in Chinese with English abstract
    [61] 中国地调局. 青海共和盆地钻获236℃干热岩[J]. 地质装备,2017,18(6):8.

    CHINA GEOLOGICAL SURVEY. Drilling of 236 ℃ hot dry rock in the Qinghai Gonghe Basin[J]. Geological Equipment,2017,18(6):8. (in Chinese with English abstract
    [62] 青海共和干热岩科技攻坚项目正式启动,干热岩进入场地开发阶段[J]. 地热能,2019(4):27-28.

    The Qinghai Gonghe Hot Dry Rock Technology Project has officially started,and the hot dry rock has entered the stage of site development [J]. Geothermal Energy,2019(4):27-28. (in Chinese with English abstract
    [63] 朱贵麟,刘东林,周殷竹,等. 青海共和盆地干热岩人工储层示踪试验研究[J/OL]. 中国地质:1-14[2025-03-31]. http://kns.cnki.net/kcms/detail/11.1167.P.20240131.1630.006.html.

    ZHU G L,LIU D L,ZHOU Y Z,et al. Tracer test study on artificial reservoirs in Hot dry rock(HDR) geothermal systems in the Gonghe Basin,Qinghai Province[J/OL]. Geology in China:1-14[2025-03-31]. http://kns.cnki.net/kcms/detail/11.1167.P.20240131.1630.006.html. (in Chinese with English abstract
    [64] ZHANG E Y,WEN D G,WANG G L,et al. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin,Qinghai Province,China[J]. China Geology,2022,5(3):372-382. doi: 10.31035/cg2022038
    [65] 窦斌,肖鹏,郑君,等. 二氧化碳爆破致裂激发干热岩储层作用效果[J]. 地质科技通报,2022,41(5):150-159.

    DOU B,XIAO P,ZHENG J,et al. Effect of stimulation in hot dry rock reservoirs from carbon dioxide blasting-induced cracking[J]. Bulletin of Geological Science and Technology,2022,41(5):150-159. (in Chinese with English abstract
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  239
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 录用日期:  2024-03-29
  • 修回日期:  2024-03-24
  • 网络出版日期:  2024-04-17

目录

    /

    返回文章
    返回