International Research Progress and Development Suggestions of Hot Dry Rock EGS Flow Test
-
摘要:
干热岩是一种开发前景广阔的地热资源。增强型地热系统是当前干热岩开发的主要方式,需要通过多个工程环节衔接实施,循环试验是其中的重要步骤。循环试验实施过程具有长期性和复杂性的特点,亟需技术突破降本增效。简要总结了国内外较为典型的干热岩开发EGS工程的循环试验经验和探索方向,阐述了多种因素对于循环试验的影响,并结合青海共和场地的实际情况提出了发展建议。可以看出,以往提高循环试验效果主要是通过开发层位及井组调整、长期循环、储层改造以及化学刺激等方法实现的,而当前技术人员主要通过改进准确获取工程参数的方法,以及改进注采井组设计和储层改造工艺进行探索。循环试验的方案制定需要充分考虑地质因素,且数值模拟、储层刺激、流程设计、工程实施等方面都值得进行深入研究。随着开发技术的日趋成熟,干热岩地热资源将会成为我国能源结构中的重要一环,为经济发展和环境保护发挥重要的作用。
Abstract:Significance Hot dry rock is a widely distributed and abundant geothermal resource, and its development and utilization are of great significance in reducing fossil energy consumption, alleviating environmental pollution, and ensuring energy security. Enhanced geothermal systems are currently the main way of developing hot dry rock resource, generally implemented through several links such as engineering site selection, geothermal drilling, thermal reservoir stimulation, flow test, and power generation engineering. Among them, flow test is an important link in undertaking thermal reservoir stimulation and power generation engineering, used to form injection and production well groups, evaluate cycle circuits, expand heat exchange capacity, and lay the foundation for ultimately achieving power generation goals safely and stably. The implementation process of flow test has the characteristics of long-term and complexity, which can easily lead to problems such as insufficient connectivity, strong microseismic effects, liquid leakage, scaling of the circulating liquid, and insufficient equipment reliability. Therefore, the flow test of hot dry rock development sites internationally is often intertwined with drilling and reservoir stimulation, and accompanied by scheme adjustments, in order to gradually achieve the power generation goal.
Progress This article briefly summarizes the flow test experience and exploration direction of typical hot dry rock development EGS systems at home and abroad, elaborates on the influence of various factors on flow test, and proposes development suggestions based on the actual situation of the Qinghai Gonghe site. It can be seen that in the past, improving the effectiveness of flow test was mainly achieved through methods such as adjusting the development layer and well group, long-term circulation, hydraulic fracturing, and chemical stimulation. However, current technicians mainly explore by accurately obtaining engineering parameters and improving the design of well groups and reservoir stimulation processes.
Conclusions and Prospects In summary, the formulation of the flow test plan needs to fully consider geological factors and adapt to local conditions. At the same time, key technologies in flow test, such as reservoir evaluation, reservoir stimulation, and engineering implementation, are worthy of in-depth research. The progress of these key technologies requires the establishment of the numerical models with more accuracy , the improvement of the accuracy and stability of various monitoring techniques, the application of more diverse hydraulic fracturing and chemical stimulation processes, and the establishment of a more comprehensive risk prevention and control system for induced earthquakes. In addition, the application of new technologies is also a possible breakthrough. Supercritical carbon dioxide and liquid nitrogen fracturing technology has advantages in thermal reservoir fracturing and energy enhancement in hot dry rock stimulation. Explosive fracturing technology has a certain effect on improving the complexity of near wellbore fractures and enhancing the injection capacity of well groups.Finally, with the goal of experimental power generation, focusing on key issues in multi well group flow test, improving the construction process of flow test is also an effective means to improve efficiency and save costs. With the increasingly mature development technology, hot dry rock geothermal resources will become an important part of China's energy structure, playing an important role in economic development and environmental protection.
-
Key words:
- hot dry rock /
- enhanced geothermal system /
- flow test /
- hydraulic fracturing /
- Gonghe basin
-
图 1 Fenton Hill EGS工程循环注采井示意图(据文献[22]修编)
EE-2,EE-3,EE-3A和EE-2A均为注采井,其中EE-3A和EE-2A分别为在EE-2和EE-3基础上侧钻的井,原因是原井连通不佳,因此改变井轨迹去增大连通概率;注入区域为虚线圈闭起来的范围;箭头为注入流体的流动方向
Figure 1. Schematic diagram of Fenton Hill EGS flow test well group
图 2 Soultz EGS工程场地循环注采井分布示意图(据文献[28]修编)
Figure 2. Schematic diagram of Soultz EGS flow test well group
图 3 Habanero EGS工程场地循环注采井分布(据文献[39]修编)
Figure 3. Schematic diagram of Habanero EGS flow test well group
图 4 Hijiori EGS工程场地循环注采井分布(据文献[47]修编)
HDR-2和HDR-3均为生产井;SKG-2和HDR-1均为注水井;HDR2A为HDR2的加深井,1994年HDR-2堵塞深度约为
1600 m,然后加深至2303 m;黑色垂直带为井套管;白色垂直区域为无套管井筒。Figure 4. Schematic diagram of Hijiori EGS flow test well group
图 5 2019年区域2注入测试期间单次(循环5)的压力−排量曲线(据文献[54]修编)
Figure 5. Pressure curve for a single cycle (cycle 5) during injection testing in region 2 in 2019
图 6 Fervo EGS工程场地循环注采井分布示意图(据文献[58]修编;1 ft=
0.3048 m)Figure 6. Schematic diagram of Fervo EGS flow test well group
图 7 共和场地压裂注采期间注入井施工排量与压力变化趋势图(据文献[60]修编)
Figure 7. Trend chart of rate and pressure changes of injection well during flow test at Gonghe site
表 1 典型干热岩EGS工程稳定层位循环试验参数汇总
Table 1. Summary Table of Stable Layer Flow Test Parameters for Typical Hot Dry Rock EGS Engineering
名称 循环方量/m3 回收率 持续时
间/天循环井组 井间距/m 最大注入
流量/LS−1最大生产
流量/LS−1井口压力
(注)/MPa井口压力
(采)/MPa液体井口
温度/℃结垢控制 Fenton HillPhase Ⅱ 1986.5.19−6.18 37000 62.8% 30 1注1采 约400 18.3 13.5 31.5 3.4 190 生产井压力保持
在10 MPa左右1991.12−1992.3 估算 270000 左右水损失率稳定
在7%左右18 1注1采 7.2 6.4 25.9 10.3 180 1992.4.8−7.31 112 1注1采 6.76 5.66 27.29 9.66 183 1992.8−1993.2 205 1注1采 7.14 5.71 27.32 12.40 182.8 1993.2.22−4.15 55 1注1采 6.50 5.71 27.34 9.65 184 1995.5.10−7.14 66 1注1采 7.6 5.9 27.3 15.2 181 SoultzLevel Ⅲ 2008.7−8 62000 循环水中有地层
卤水成分,难以判别40 1注2采 约600 31 31 7.3 1.8 将生产井压力
保持在2 MPa左右2008.11−12 63000 40 1注2采 27 17 8.6 1.8 2009.3−2009.10 285000 230 2注2采 20 22 6.8 2 2009.11−2010.10 500000 323 2注1采 15 18 5 1.8 2011.1−4 165000 90 2注1采 11 22 1.8 1.9 2011.8−10 135000 70 2注1采 12 23 1.6 2 2012.3−4 30000 31 3注1采 12 21 1.5 2 2013.1−7 200000 180 3注1采 12 15 0.6 2 Cooper Basin 2008.12−2009.2 61000 71 1注1采 570 15.4 212 2013.4−2013.10 182000 91% 161 1注1采 690 18.9 215 Hijiori 2000.11.27−2001.11.15 484203 43% 354 1注2采 130 20.0 10-7 130 结垢严重。扩孔
消除水垢2001.11.23−2002.4.28 310733 54% 157 2注2采 130 16.7 2-4 2002.6.1−2002.8.31 92 2注2采 130 16.7 1 -
[1] 张二勇. 干热岩资源调查与勘查试采示范工程简介[J]. 中国地质,2022,49(2):350.ZHANG E Y. Introduction to the demonstration project of investigation and exploration of hot dry rock resources[J]. China Geology,2022,49(2):350. (in Chinese with English abstract [2] 蔺文静,刘志明,马峰,等. 我国陆区干热岩资源潜力估算[J]. 地球学报,2012,33(5):807-811. doi: 10.3975/cagsb.2012.05.12LIN W J,LIU Z M,MA F,et al. An estimation of HDR resources in China's mainland[J]. Acta Geoscientica Sinica,2012,33(5):807-811. (in Chinese with English abstract doi: 10.3975/cagsb.2012.05.12 [3] 蔺文静,王贵玲,邵景力,等. 我国干热岩资源分布及勘探:进展与启示[J]. 地质学报,2021,95(5):16.LIN W J,WANG G L,SHAO J L,et al. Distribution and exploration of hot dry rock resources in China:Progress and enlightenment[J]. Acta Geologica Sinica,2021,95(5):16. (in Chinese with English abstract [4] 赵宏,伍浩松. 世界地热发电产业概况[J]. 国外核新闻,2017(12):18-22.ZHAO H,WU H S. Overview of the world geothermal power generation industry[J]. Foreign Nuclear News,2017(12):18-22. (in Chinese with English abstract [5] 黄嘉超,李天舒,谷雪曦. 国际地热利用发展形势对中国的启发[J]. 石化技术,2020,27(9):252-253. doi: 10.3969/j.issn.1006-0235.2020.09.151HUANG J C,LI T S,GU X X. Enlightenment of the development situation of international geothermal utilization to China[J]. Petrochemical Industry Technology,2020,27(9):252-253. (in Chinese with English abstract doi: 10.3969/j.issn.1006-0235.2020.09.151 [6] 许天福,袁益龙,姜振蛟,等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版),2016,46(4):1139-1152.XU T F,YUAN Y L,JIANG Z J,et al. Hot dry rock and enhanced geothermal engineering:International experience and China prospect[J]. Journal of Jilin University (Earth Science Edition),2016,46(4):1139-1152. (in Chinese with English abstract [7] 毛翔,国殿斌,罗璐,等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评,2019,65(6):1462-1472.MAO X,GUO D B,LUO L,et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review,2019,65(6):1462-1472. (in Chinese with English abstract [8] 宋先知. 从传统地热能到增强型地热系统[J]. 国际学术动态,2020(2):2.SONG X Z. From traditional geothermal energy to enhanced geothermal systems[J]. International Academic Trends,2020(2):2. (in Chinese with English abstract [9] 亢方超,唐春安,李迎春,等. 增强地热系统研究现状:挑战与机遇[J]. 工程科学学报,2022,44(10):1767-1777. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210014KANG F C,TANG C A,LI Y C,et al. Challenges and opportunities of enhanced geothermal systems:A review[J]. Chinese Journal of Engineering,2022,44(10):1767-1777. (in Chinese with English abstract doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210014 [10] ZHANG Y L,ZHAO G F. A global review of deep geothermal energy exploration:From a view of rock mechanics and engineering[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2019,6(1):4. [11] 许天福,胡子旭,李胜涛,等. 增强型地热系统:国际研究进展与我国研究现状[J]. 地质学报,2018,92(9):1936-1947. doi: 10.3969/j.issn.0001-5717.2018.09.012XU T F,HU Z X,LI S T,et al. Enhanced geothermal system:International progresses and research status of China[J]. Acta Geologica Sinica,2018,92(9):1936-1947. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2018.09.012 [12] 那金,许天福,吴永东,等. 增强型地热系统(EGS)土酸化学刺激剂对热储层的改造[J]. 中南大学学报(自然科学版),2017,48(1):247-254. doi: 10.11817/j.issn.1672-7207.2017.01.033NA J,XU T F,WU Y D,et al. Effectiveness of using mud acid as stimulation agent for enhanced geothermal systems(EGS) reservoir[J]. Journal of Central South University (Science and Technology),2017,48(1):247-254. (in Chinese with English abstract doi: 10.11817/j.issn.1672-7207.2017.01.033 [13] 窦斌,高辉,周刚,等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报,2014,33(5):208-210.DOU B,GAO H,ZHOU G,et al. Opportunities and challenges of developing enhance geothermal system technology in China[J]. Geological Science and Technology Information,2014,33(5):208-210. (in Chinese with English abstract [14] 王贵玲,马峰,蔺文静,等. 干热岩资源开发工程储层激发研究进展[J]. 科技导报,2015,33(11):103-107.WANG G L,MA F,LIN W J,et al. Reservoir stimulation in hot dry rock resource development[J]. Science & Technology Review,2015,33(11):103-107. (in Chinese with English abstract [15] 王贵玲,陆川. 碳中和目标驱动下干热岩和增强型地热系统增产技术发展[J]. 地质与资源,2023,32(1):85-95.WANG G L,LU C. Stimulation technology development of hot dry rock and enhanced geothermal system driven by carbon neutrality target[J]. Geology and Resources,2023,32(1):85-95. (in Chinese with English abstract [16] BROWN D W,DUCHANE D V. Scientific progress on the Fenton Hill HDR project since 1983[J]. Geothermics,1999,28(4/5):591-601. [17] NORBECK J H,MCCLURE M W,HORNE R N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation[J]. Geothermics,2018,74:135-149. doi: 10.1016/j.geothermics.2018.03.003 [18] RINALDI A P,RUTQVIST J. Joint opening or hydroshearing? Analyzing a fracture zone stimulation at Fenton Hill[J]. Geothermics,2019,77:83-98. doi: 10.1016/j.geothermics.2018.08.006 [19] KELKAR S,WOLDEGABRIEL G,REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill,USA[J]. Geothermics,2016,63:5-14. doi: 10.1016/j.geothermics.2015.08.008 [20] BROWN D W. Hot dry rock geothermal energy:Important lessons from Fenton Hill[J]. Thirty-Fourth Workshop on Geothermal Reservoir Engineering,2009:3-6. [21] ZIAGOS J,PHILLIPS B,BOYD L,et al. A technology roadmap for strategic development of enhanced geothermal systems[C]//Anon. Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2013:17123116. [22] DUCHANE D. International programs in hot dry rock technology development[J]. Geotherm. Resour. Counc. Bull.,1991,20(5):135-142. [23] BROWN D W,DUCHANE D V,HEIKEN G,et al. Mining the earth's heat:Hot dry rock geothermal energy[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,2012. [24] BARIA R,BAUMGäRTNER J,GéRARD A,et al. European HDR research programme at Soultz-sous-Forêts(France)1987-1996[J]. Geothermics,1999,28(4):655-669. [25] BARIA R,BAUMGAERTNER J,GERARD A,et al. European HDR geothermal research programme,1998-2001,EU final report ,Contractno (JOR3-CT98-0313),2001. [26] VALLEY B,DEZAYES C,GENTER A. Multi-scale fracturing in the Soultz-sous-Forêts basement from borehole images analyses[C]//Anon. Soultz Sei-entific Meeting. Orleans:Geothermal Energy Division,2007. [27] BARIA R,MICHELET S,BAUMGAERTNER J,et al. Microseismic monitoring of the world's largest potential HDR reservoir[C]/Anon. Twenty Ninth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2004. [28] DEZAYES C ,CENTER A ,GENTIER S. Fracture network of the EGS geothermal reservoir at SouItz-sous-Forêts (Rhine Graben,France)[J]. Transactions-Geothermal Resources Council,2004,28:213-218. [29] BAUMGRTNER J,GÉRARD A,BARIA R,et al. Circulating the HDR reservoir at Soultz:Maintaining production and injection flow in complete balance[C]//Anon. Twenty-third Workshop on Geothermal Reservoir Engineering. [S. 1. ]:[s. n. ],1998. [30] GENTER A,EVANS K,CUENOT N,et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience,2010,342(7/8):502-516. [31] HELD S,GENTER A,KOHL T,et al. Economic evaluation of geothermal reservoir performance through modeling the complexity of the operating EGS in Soultz-sous-Forêts[J]. Geothermics,2014,51:270-280. doi: 10.1016/j.geothermics.2014.01.016 [32] SCHILL E,GENTER A,CUENOT N,et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests[J]. Geothermics,2017,70:110-124. doi: 10.1016/j.geothermics.2017.06.003 [33] CUENOT N,DORBATH C,DORBATH L. Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts (Alsace,France):Implications for the characterization of the geothermal reservoir properties[J]. Pure and Applied Geophysics,2008,165(5):797-828. doi: 10.1007/s00024-008-0335-7 [34] GENTER A,FRITSCH D,CUENOT N,et al. Overview of the current activities of the European Egs Soultz project:From exploration to electricity production[C]//Anon. Thirty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2009:11590911. [35] CHARLéTY J,CUENOT N,DORBATH L,et al. Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(8):1091-1105. doi: 10.1016/j.ijrmms.2007.06.003 [36] BENDALL B,HOGARTH R,HOLL H,et al. Australian experiences in EGS permeability enhancement:A review of 3 case studies[C]//Anon. Thirty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2014. [37] WYBORN D. Update of development of the geothermal field in the granite at Innamincka,south Australia[C]//Anon. World Geothermal Congress. Ba-li:Geodynamics Limited,2010:59373939. [38] KAIEDA H,SASAKI S,WYBORN D. Comparison of characteristics of micro-earthquakes observed during hydraulic stimulation operations in Ogachi,Hijiori and Cooper Basin HDR projects[C]//Anon. Proceedings of the World Geothermal Congress. [S. l. ]:[s. n. ]:2010. [39] LLANOS E M,ZARROUK S J,HOGARTH R A. Numerical model of the Habanero geothermal reservoir,Australia[J]. Geothermics,2015,53:308-319. doi: 10.1016/j.geothermics.2014.07.008 [40] HOGARTH R,HOLL H,MCMAHON A. Flow testing results from Habanero EGS project[C]//Anon. Australian Geothermal Energy Conference. [S. 1. ]:[s. n. ],2013. [41] AYLING B F,HOGARTH R A,ROSE P E. Tracer testing at the Habanero EGS site,central Australia[J]. Geothermics,2016,63:15-26. doi: 10.1016/j.geothermics.2015.03.008 [42] YANAGISAWA N,NGOTHAI Y,ROSE P,et al. Geochemical behavior of EGS reservoir during first circulation test at Habanero site,Cooper Basin,Australia[J]. Journal of the Geothermal Research Society of Japan,2011,33(3):125-130. [43] CHEN D,WYBORN D. Habanero Field Tests in the Cooper Basin,Australia:A Proof-of-Concept for EGS[C]//Anon. Geothermal Resources Council Annual Meeting. [S. 1. ]:[s. n. ],2009. [44] Yamaguchi T ,Ito T ,Itoi R ,et al. Review of the Hijiori HDR project :Circulation and Heat Extraction[J]. 日本地熱学会学術講演会講演要旨集,2004. [45] YANAGISAWA N,MATSUNAGA I,SUGITA H,et al. Reservoir evaluation by tracer tests during a long term circulation test at the Hijiori HDR test field,Yamagata,Japan[J]. Journal of the Geothermal Research Society of Japan,2006,28(1):57-76. [46] TENMA N,YAMAGUCHI T,ZYVOLOSKI G. The Hijiori Hot Dry Rock test site,Japan:Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics,2008,37(1):19-52. doi: 10.1016/j.geothermics.2007.11.002 [47] SWENSON D,SCHROEDER R,SHINOHARA N,et al. Analyses of the hijiori long term circulation test[C]//Anon. Twenty Fourth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,1999:27554763. [48] TENMA N,YAMAGUCHI T,OIKAWA Y,et al. Comparison of the deep and the shallow reservoirs at the Hijiori HDR test site using FEHM code [C]//Anon. Twenty Sixth Workshop on Geothermal Reservoir Engineering. Stanford,California:Stanford University,2001. [49] YAMAGUCHI S,AKIBAYASHI S,ROKUGAWA S,et al. The numerical modeling study of the Hijiori HDR test site[C]//Anon. World Geothermal Congress. Kyushu,Tohoku:Akita University,2000. [50] ITO T,HAYASHI K. Role of stress-controlled flow pathways in HDR geothermal reservoirs[J]. Pure and Applied Geophysics,2003,160(5/6):1103-1124. [51] 解经宇,王丹,李宁,等. 干热岩压裂建造人工热储发展现状及建议[J]. 地质科技通报,2022,41(3):321-329.XIE J Y,WANG D,LI N,et al. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology,2022,41(3):321-329. (in Chinese with English abstract [52] 解经宇,陆洪智,陈磊,等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报,2021,40(3):67-77.XIE J Y,LU H Z,CHEN L,et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology,2021,40(3):67-77. (in Chinese with English abstract [53] BONNEVILLE A ,CLADOUHOS T T ,SCHULTZ A. Establishing the frontier observatory for research in geothermal energy (FORGE) on the Newberry Volcano,Oregon[C]//Anon. 41st Workshop on Geothermal Reservoir Engineering. [S. 1. ]:[s. n. ],2016. [54] RIAHI A,PETTITT W,DAMJANAC B,et al. Numerical modeling of discrete fractures in a field-scale FORGE EGS reservoir[J]. Rock Mechanics and Rock Engineering,2019,52(12):5245-5258. doi: 10.1007/s00603-019-01894-6 [55] ALLIS R,MOORE J,DAVATZES N,et al. EGS concept testing and development at the Milford,Utah FORGE site[C]//Anon. Workshop on Geothermal Reservoir Engineering. [S. 1. ]:[s. n. ],2016. [56] XING P J,DAMJANAC B,MOORE J,et al. Flowback test analyses at the Utah Frontier Observatory for research in geothermal energy (FORGE) site[J]. Rock Mechanics and Rock Engineering,2022,55(5):3023-3040. doi: 10.1007/s00603-021-02604-x [57] 张森琦, 文冬光, 许天福, 等. 美国干热岩"地热能前沿瞭望台研究计划"与中美典型EGS场地勘查现状对比[J]. 地学前缘, 2019, 26(2): 321-334.ZHANG S Q, WEN D G, XU T F, et al. The U. S. Frontier Observatory For Research in Geothermal Energy project and comparison of typical EGS site exploration status in China and U. S.[J]. Earth Science Frontiers, 2019, 26(2): 321-334. (in Chinese with English abstract) [58] NORBECK J,LATIMER T. Commercial-scale demonstration of a first-of-a-kind enhanced geothermal system[J]. EarthArXiv Eprints,2023:X52X0B. [59] 张森琦,付雷,张杨,等. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业,2020,40(9):156-169. doi: 10.3787/j.issn.1000-0976.2020.09.019ZHANG S Q,FU L,ZHANG Y,et al. Delineation of target areas for hot dry rock exploration in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natural Gas Industry,2020,40(9):156-169. (in Chinese with English abstract doi: 10.3787/j.issn.1000-0976.2020.09.019 [60] 严维德. 共和盆地干热岩特征及利用前景[J]. 科技导报,2015,33(19):54-57.YAN W D. Characteristics and utilization prospects of hot dry rocks in the Gonghe Basin[J]. Science and Technology Review,2015,33(19):54-57. (in Chinese with English abstract [61] 中国地调局. 青海共和盆地钻获236℃干热岩[J]. 地质装备,2017,18(6):8.CHINA GEOLOGICAL SURVEY. Drilling of 236 ℃ hot dry rock in the Qinghai Gonghe Basin[J]. Geological Equipment,2017,18(6):8. (in Chinese with English abstract [62] 青海共和干热岩科技攻坚项目正式启动,干热岩进入场地开发阶段[J]. 地热能,2019(4):27-28.The Qinghai Gonghe Hot Dry Rock Technology Project has officially started,and the hot dry rock has entered the stage of site development [J]. Geothermal Energy,2019(4):27-28. (in Chinese with English abstract [63] 朱贵麟,刘东林,周殷竹,等. 青海共和盆地干热岩人工储层示踪试验研究[J/OL]. 中国地质:1-14[2025-03-31]. http://kns.cnki.net/kcms/detail/11.1167.P.20240131.1630.006.html.ZHU G L,LIU D L,ZHOU Y Z,et al. Tracer test study on artificial reservoirs in Hot dry rock(HDR) geothermal systems in the Gonghe Basin,Qinghai Province[J/OL]. Geology in China:1-14[2025-03-31]. http://kns.cnki.net/kcms/detail/11.1167.P.20240131.1630.006.html. (in Chinese with English abstract [64] ZHANG E Y,WEN D G,WANG G L,et al. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin,Qinghai Province,China[J]. China Geology,2022,5(3):372-382. doi: 10.31035/cg2022038 [65] 窦斌,肖鹏,郑君,等. 二氧化碳爆破致裂激发干热岩储层作用效果[J]. 地质科技通报,2022,41(5):150-159.DOU B,XIAO P,ZHENG J,et al. Effect of stimulation in hot dry rock reservoirs from carbon dioxide blasting-induced cracking[J]. Bulletin of Geological Science and Technology,2022,41(5):150-159. (in Chinese with English abstract -