留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地东缘白马地区常压页岩气开发地质评价

刘超 包汉勇 万云强

刘超, 包汉勇, 万云强. 四川盆地东缘白马地区常压页岩气开发地质评价[J]. 地质科技通报, 2024, 43(4): 53-61. doi: 10.19509/j.cnki.dzkq.tb20230648
引用本文: 刘超, 包汉勇, 万云强. 四川盆地东缘白马地区常压页岩气开发地质评价[J]. 地质科技通报, 2024, 43(4): 53-61. doi: 10.19509/j.cnki.dzkq.tb20230648
LIU Chao, BAO Hanyong, WAN Yunqiang. Development geology avaluation of normal-pressured shale gas in the Baima area, eastern margin of the Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 53-61. doi: 10.19509/j.cnki.dzkq.tb20230648
Citation: LIU Chao, BAO Hanyong, WAN Yunqiang. Development geology avaluation of normal-pressured shale gas in the Baima area, eastern margin of the Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 53-61. doi: 10.19509/j.cnki.dzkq.tb20230648

四川盆地东缘白马地区常压页岩气开发地质评价

doi: 10.19509/j.cnki.dzkq.tb20230648
基金项目: 

中国石油化工股份有限公司科技项目“白马区块常压页岩气富集高产机理与目标评价” P21087-1

详细信息
    通讯作者:

    刘超,E-mail:237172306@qq.com

  • 中图分类号: P618.13

Development geology avaluation of normal-pressured shale gas in the Baima area, eastern margin of the Sichuan Basin

More Information
  • 摘要:

    涪陵气田是我国第一个实现商业开发的页岩气田, 近几年年产气量稳定在70亿m3以上, 开发效果良好。随着开发需求不断增大, 开发对象由焦石坝等高压页岩气藏逐步转向了白马常压页岩气藏。2021年白马地区提交探明储量1 048.83亿m3, 地质资源基础得到夯实, 而开发地质评价与目标优选是实现储量有效动用第一环。以分析化验、测井解释、地震预测、压裂试气资料为基础, 开展白马地区常压页岩气开发有利层段与有利目标评价研究。研究结果表明, 白马地区奥陶系五峰组-志留系龙马溪组发育深水陆棚相富有机质页岩, 其中深水陆棚硅质页岩是开发最有利层段。明确了地层压力系数、孔隙度、天然裂缝、应力性质是常压页岩气开发地质评价的关键参数。以此为基础, 建立了白马常压页岩气藏开发选区地质参数体系, 优选白马向斜南部为开发建产第一目标, 实现了规模效益建产, 对常压页岩气开发具有重要借鉴意义。

     

  • 图 1  白马地区五峰组底界构造等值线图

    Figure 1.  Contour map of the Wufeng Formation bottom in the Baima area

    图 2  白马地区五峰组-龙马溪组一段沉积相划分柱状图

    GR.自然伽马;w(TOC).有机碳质量分数;下同

    Figure 2.  Histogram of sedimentary facies division in the Wufeng Formation-the First Member of Longmaxi Formation in the Baima area

    图 3  白马地区焦页A井页岩总孔容、含气量、硅质体积分数与有机碳关系图

    Figure 3.  Relationships between total pore volume, gas content, and silicon content and organic carbon in the Well Jiaoye A shale in the Baima area

    图 4  白马地区主控断层由北至南断距变化直方图

    Figure 4.  Spatial change in fault displacement of the main controlling fault from north to south in the Baima area

    图 5  白马地区地层压力系数、单井EUR与石门断层距离关系图(EUR.单井评估的最终可采储量)

    Figure 5.  Relationships among the formation pressure coefficient, single-well EUR and Shimen fault distance in the Baima area

    图 6  涪陵地区五峰组-龙马溪组不同地层压力系数下页岩孔径分布扫描电镜

    a.焦页D井③小层, 地层压力系数1.5,深度2 350 m; b.焦页E井③小层, 地层压力系数0.98,深度2 264 m

    Figure 6.  Scanning electron microscopy images of the shale pore size distribution under the different formation pressure coefficients in the Wufeng Formation-Longmaxi Formation of the Fuling area

    图 7  白马地区页岩含气量、游离气量、吸附气量与地层压力系数关系

    Figure 7.  Relationships between the shale gas content, free gas content, adsorbed gas content and formation pressure coefficient in the Baima area

    图 8  白马区块白马向斜应力性质图

    Figure 8.  Stress properties of the Baima syncline in the Baima block

    图 9  不同压裂段微地震监测裂缝长度数据统计直方图

    Figure 9.  Histogram of fracture length monitored microseismic in different fracturing sections

    表  1  白马地区五峰组-龙马溪组一段不同沉积微相页岩测井解释统计

    Table  1.   Statistics of the sedimentary microfacies interpreted from the well log of the Wufeng Formation-First Member of the Longmaxi Formation in the Baima area

    沉积微相 井号 厚度/m w(TOC)/% 硅质体积分数/% 黏土体积分数/% 孔隙度/ % 含气量/ (m3·t-1)
    硅质深水陆棚 焦页A 21 3.6 59 25 3.53 5.85
    焦页B 19 4.1 57 26 3.54 4.75
    焦页C 22 4.2 55 31 3.55 4.45
    含黏土硅质深水陆棚 焦页A 23 2.7 50 36 3.55 4.88
    焦页B 23 2.9 49 37 3.48 3.80
    焦页C 22 3.2 48 40 3.59 3.58
    硅质黏土深水陆棚 焦页A 21 1.9 47 39 2.26 3.09
    焦页B 35 1.8 44 42 2.86 2.63
    焦页C 30 2.1 43 44 2.84 2.65
    黏土质深水陆棚 焦页A 29 1.6 43 43 2.96 3.05
    焦页B 44 1.5 35 53 3.57 2.74
    焦页C 34 1.7 36 53 3.68 2.72
    下载: 导出CSV

    表  2  涪陵气田白马地区与焦石坝地区页岩气地质特点对比

    Table  2.   Geological characteristics of shale gas in the Baima and Jiaoshiba regions of the Fuling Gas Field

    项别 白马常压页岩气 焦石坝高压页岩气
    构造变形 冲断褶皱变形 断滑褶皱变形
    断裂发育密度/(条·km-2) >0.3 <0.05
    埋藏深度/m 2 000~4 800 2 500~3 500
    孔隙度/% 1.73~6.21(3.00) 1.87~6.83(4.64)
    含气量/(m3·t-1) 1.74~6.40(3.22) 1.49~7.71(4.44)
    赋存特征 吸附气与游离气比0.53∶0.47 吸附气与游离气占比0.42∶0.58
    地层压力系数 0.98~1.39 1.4~1.6
    注:括弧内数值为均值
    下载: 导出CSV

    表  3  焦页A平台2口水平井压裂施工参数对比

    Table  3.   Comparison of fracturing construction parameters between two horizontal wells on the Jiaoye A platform

    序号 井名 曲率特征 水平段埋深/m 破裂压力/MPa 施工压力/MPa 排量/(m3·min-1) 平均砂比/%
    1 A-1HF 中低值斑点状 3 700~4 250 79 70~75 14~16 8.3
    2 A-2HF 低值-空白 3 760~3 900 89 90~105 8~10 5.6
    下载: 导出CSV

    表  4  白马地区页岩气开发选区地质参数体系

    Table  4.   Geological parameters of the target shale gas development area in the Baima area

    类别 含气性评价参数 可压性评价参数
    孔隙度/% 压力系数 埋深/m 天然裂缝(曲率) 应力性质
    Ⅰ类 ≥4.0 ≥1.3 ≤3 500 低值斑点状曲率,非均质性弱 中-弱挤压
    Ⅱ类 (3.0, 4.0) (1.1, 1.3) (3 500, 4 000) 空白曲率或中值条带状曲率,非均质性弱 中-弱拉张
    Ⅲ类 [2.0, 3.0] [0.9, 1.3] [4 000, 4 500] 单方向高值条带状曲率,非均质性强 强挤压强拉张
    Ⅳ类 <2.0 <0.9 >4 500 多方向高值条带状曲率,非均质性强
    下载: 导出CSV
  • [1] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm

    MA Y S, CAI X Y, ZHAO P R. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    [2] 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23(2): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602004.htm

    HE Z L, NIE H K, ZHANG Y Y. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602004.htm
    [3] 翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm

    ZHAI G Y, WANG Y F, BAO S J, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm
    [4] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm

    MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm
    [5] 张丽雅, 李艳霞, 李净红, 等. 页岩气成藏条件及中上扬子区志留系页岩气勘探前景分析[J]. 地质科技情报, 2011, 30(6): 90-93. doi: 10.3969/j.issn.1000-7849.2011.06.012

    ZHANG L Y, LI Y X, LI J H, et al. Accumulation conditions for shale gas and it's future exploration of Silurian in the Central-Upper Yangtze region[J]. Geological Science and Technology Information, 2011, 30(6): 90-93. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7849.2011.06.012
    [6] 龙幼康. 中扬子地区下古生界页岩气的勘探潜力[J]. 地质通报, 2011, 30(增刊1): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1021.htm

    LONG Y K. Lower Paleozoic shale gas exploration potential in the central Yangtze area, China[J]. Geological Bulletin of China, 2011, 30(S1): 344-348. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1021.htm
    [7] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510. doi: 10.11698/PED.2016.04.01

    ZHAO W Z, LI J Z, YANG T, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. (in Chinese with English abstract) doi: 10.11698/PED.2016.04.01
    [8] 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm

    ZOU C N, ZHAO Q, DONG D Z, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm
    [9] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5): 14-19. doi: 10.3969/j.issn.2095-1426.2019.05.002

    GUO T L. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5): 14-19. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-1426.2019.05.002
    [10] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm

    GUO T L. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317-326. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603002.htm
    [11] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5): 1-13. doi: 10.3969/j.issn.2095-1426.2019.05.001

    FANG Z X. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1-13. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-1426.2019.05.001
    [12] 梅廉夫, 刘昭茜, 汤济广, 等. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据[J]. 地球科学, 2010, 35(2): 161-174. doi: 10.3969/j.issn.1672-6561.2010.02.008

    MEI L F, LIU Z Q, TANG J G, et al. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section[J]. Earth Science, 2010, 35(2): 161-174. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2010.02.008
    [13] 赵文韬, 荆铁亚, 吴斌, 等. 断裂对页岩气保存条件的影响机制: 以渝东南地区五峰组-龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809011.htm

    ZHAO W T, JING T Y, WU B, et al. Controlling mechanism of faults on the preservation conditions of shale gas: A case study of Wufeng-Longmaxi formations in Southeast Chongqing[J]. Natural Gas Geoscience, 2018, 29(9): 1333-1344. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809011.htm
    [14] 刘义生, 金吉能, 潘仁芳, 等. 渝东南盆缘转换带五峰组-龙马溪组常压页岩气保存条件评价[J]. 地质科技通报, 2023, 42(1): 253-263. doi: 10.19509/j.cnki.dzkq.tb20210768

    LIU Y S, JIN J N, PAN R F, et al. Preservation condition evaluation of normal pressure shale gas in the Wufeng and Longmaxi formations of basin margin transition zone, Southeast Chongqing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 253-263. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210768
    [15] 牟传龙, 周恳恳, 梁薇, 等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 2011, 85(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104009.htm

    MU C L, ZHOU K K, LIANG W, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104009.htm
    [16] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    GUO X S, LI Y P, TENG G E, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
    [17] BRUNER K R, WALKER-MILANI M, SMOSNA R, et al. Lithofacies of the Devonian Marcellus shale in the eastern Appalachian Basin, U.S.A. [J]. Journal of Sedimentary Research, 2015, 85(8): 937-954. doi: 10.2110/jsr.2015.62
    [18] ABOUELRESH M O, SLATT R M. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22. doi: 10.1306/04261110116
    [19] 何希鹏, 高玉巧, 唐显春, 等. 渝东南地区常压页岩气富集主控因素分析[J]. 天然气地球科学, 2017, 28(4): 654-664. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704021.htm

    HE X P, GAO Y Q, TANG X C, et al. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing[J]. Natural Gas Geoscience, 2017, 28(4): 654-664. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704021.htm
    [20] 左建平, 谢和平, 周宏伟, 等. 温度影响下煤层顶板砂岩的破坏机制及塑性特性[J]. 中国科学(技术科学), 2007, 37(11): 1394-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200711003.htm

    ZUO J P, XIE H P, ZHOU H W, et al. The failure mechanism and plasticity of roof sandstone in coal seam under the influence of temperature[J]. Science in China (Technological Science), 2007, 37(11): 1394-1042. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200711003.htm
    [21] 孙川翔, 聂海宽, 苏海琨, 等. 温压耦合作用下四川盆地深层龙马溪组页岩孔渗和岩石力学特征[J]. 石油勘探与开发. 2023, 50(1): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202301007.htm

    SUN C X, NIE H K, SU H K, et al. Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 77-88. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202301007.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  325
  • PDF下载量:  560
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-21
  • 录用日期:  2024-03-13
  • 修回日期:  2024-01-03

目录

    /

    返回文章
    返回