留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干热岩压裂储层布井方式优选数值模拟

张立刚 胡志楠 范森 罗晓雷 丁河嘉 马媛媛 李庆龙 宋永扬

张立刚, 胡志楠, 范森, 罗晓雷, 丁河嘉, 马媛媛, 李庆龙, 宋永扬. 干热岩压裂储层布井方式优选数值模拟[J]. 地质科技通报, 2024, 43(3): 1-11. doi: 10.19509/j.cnki.dzkq.tb20230661
引用本文: 张立刚, 胡志楠, 范森, 罗晓雷, 丁河嘉, 马媛媛, 李庆龙, 宋永扬. 干热岩压裂储层布井方式优选数值模拟[J]. 地质科技通报, 2024, 43(3): 1-11. doi: 10.19509/j.cnki.dzkq.tb20230661
ZHANG Ligang, HU Zhinan, FAN Sen, LUO Xiaolei, DING Hejia, MA Yuanyuan, LI Qinglong, SONG Yongyang. Optimization of pattern of well in hot dry rock fractured reservoirs through numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 1-11. doi: 10.19509/j.cnki.dzkq.tb20230661
Citation: ZHANG Ligang, HU Zhinan, FAN Sen, LUO Xiaolei, DING Hejia, MA Yuanyuan, LI Qinglong, SONG Yongyang. Optimization of pattern of well in hot dry rock fractured reservoirs through numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 1-11. doi: 10.19509/j.cnki.dzkq.tb20230661

干热岩压裂储层布井方式优选数值模拟

doi: 10.19509/j.cnki.dzkq.tb20230661
详细信息
    作者简介:

    张立刚, E-mail: zhangligang529@163.com

    通讯作者:

    胡志楠, E-mail: zina1999@126.com

  • 中图分类号: P314.2

Optimization of pattern of well in hot dry rock fractured reservoirs through numerical simulation

More Information
  • 摘要:

    增强型地热系统(EGS)是从干热岩储层中提取热能的重要手段, 而布井方式是影响其采热效果的关键因素, 目前开展的布井方式研究较少考虑压裂储层开采模型的影响。建立了干热岩压裂储层采热的数值模型, 通过不同位置的基质岩体温度下降幅度、热提取率、采出温度和采热功率对比分析了4种不同的布井方式对EGS采热性能的影响。结果表明: 相较于直井, 水平井的流体热交换的面积更大, 能充分开发裂缝间的热量。在生产30 a时, 考虑水力压裂裂缝连通的情况下, 水平井一注两采模型的采热效率最高, 其在垂直于井方向上温度波及范围约690 m, 基质岩体平均温度下降38.09 K, 热提取率为24.42%, 采热功率为3.5 MW。研究成果为提高地热系统产热量、实现干热岩高效可持续开发提供了理论参考。

     

  • 图 1  双重孔隙介质模型示意图

    Figure 1.  Schematic diagram of a dual-porosity dual-permeability model

    图 2  网格划分图

    Figure 2.  Grid partitioning diagram

    图 3  不同网格数量下生产30 a后的模拟结果

    Figure 3.  Simulation results for different grid numbers after 30 years of production

    图 4  布井方式示意图

    Figure 4.  Schematic diagram of the well layout

    图 5  不同模拟方案所建模型平面示意图

    Figure 5.  Schematic diagram of the model plane for different simulation schemes

    图 6  直井模型不同生产时间的温度场变化图

    a~f.方案1(直井一注一采); g~l.方案2(直井一注两采)。AB.垂直于井直线代号;方案参数见表 2,下同

    Figure 6.  Temperature field variation diagram for the vertical well model after different years of production

    图 7  直井模型不同生产时间的直线AB温度分布曲线

    a.方案1(直井一注一采); b.方案2(直井一注两采)

    Figure 7.  Temperature distribution curve along Line AB for the vertical well model after different years of production

    图 8  水平井模型不同生产时间的温度场变化图

    a~f.方案3(水平井一注一采); g~l.方案4(水平井一注两采)

    Figure 8.  Temperature field variation diagram for the horizontal well model after different years of production

    图 9  水平井模型不同生产时间的直线AB温度分布曲线

    a.方案3(水平井一注一采); b. 方案4(水平井一注两采)

    Figure 9.  Temperature distribution curve along Line AB for the horizontal well model after different years of production

    图 10  4种布井方式生产30 a时直线AB处温度分布曲线

    Figure 10.  Temperature distribution curve along Line AB for four patterns of well after 30 years of production

    图 11  不同方案下基质岩体平均温度(a)、热提取率(b)、采出温度(c)和采热功率(d)变化曲线

    Figure 11.  Variation curves of average temperature of bedrock(a), heat extraction rate(b), production temperature(c) and heat extraction power (d) under different schemes

    表  1  热储应用初始参数表

    Table  1.   Initial parameters for thermal storage applications

    模型参数 数值 模型参数 数值
    地层压力/MPa 20 天然裂缝间距/m 50
    地层温度/K 433.15 岩石导热系数/(W·m-1·K-1) 2.74
    孔隙度/% 1.86 上覆岩层导热系数/(W·m-1·K-1) 1.75
    渗透率/10-3 μm2 0.63 岩石体积热容/(106 J·m-3·K-1) 2.18
    注水温度/K 298.15 水相导热系数/(W·m-1·K-1) 0.59
    水体积热容/(106 J·m-3·K-1) 4.2 裂缝孔隙度/% 50
    裂缝渗透率/10-3 μm2 50 000 裂缝开度/10-3 m 2
    套管外径/m 0.177 8 套管厚度/m 0.01
    套管体积热容/(106 J·m-3·K-1) 3.63 套管导热系数/(W·m-1·K-1) 44.9
    水泥环厚度/m 0.04 水泥环导热系数/(W·m-1·K-1) 2.1
    水泥环体积热容/(106 J·m-3·K-1) 1.67
    下载: 导出CSV

    表  2  模拟方案参数

    Table  2.   Parameters of simulation scheme

    方案 裂缝半长/m 裂缝数/条 注入流量/ (kg·s-1)
    方案1(直井一注一采) 75 1 1
    方案2(直井一注两采) 150 1 9
    方案3(水平井一注一采) 75 9 1
    方案4(水平井一注两采) 150 9 9
    注:注采井距150 m; 生产压差12 MPa
    下载: 导出CSV
  • [1] 魏震波, 马新如, 郭毅, 等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J]. 电力建设, 2022, 43(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS202201001.htm

    WEI Z B, MA X R, GUO Y, et al. Optimized operation of integrated energy system considering demand response under carbon trading mechanism[J]. Electric Power Construction, 2022, 43(1): 1-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS202201001.htm
    [2] BROWN D W, DUCHANE D V, HEIKEN G, et al. Mining the earth's heat: Hot dry rock geothermal energy[M]. Berlin, Heidelberg: Springer, 2012.
    [3] 冯波, 柯尊嵩, 刘彦广, 等. 增强型地热系统储层堵塞机理及解堵技术进展[J]. 天然气工业, 2022, 42(12): 165-183. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202212017.htm

    FENG B, KE Z S, LIU Y G, et al. Plugging mechanism and plugging removal technologies for enhanced geothermal system reservoirs[J]. Natural Gas Industry, 2022, 42(12): 165-183. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202212017.htm
    [4] 付亚荣, 李明磊, 王树义, 等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201804022.htm

    FU Y R, LI M L, WANG S Y, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526-540. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201804022.htm
    [5] 孙明行, 张起钻, 刘德民, 等. 广西干热型地热资源成因机制与赋存模式[J]. 地质科技通报, 2022, 41(3): 330-340. doi: 10.19509/j.cnki.dzkq.2022.0037

    SUN M H, ZHANG Q Z, LIU D M, et al. Genesis and occurrence models of hot-dry geothermal resources in Guangxi[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 330-340. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0037
    [6] 刘松泽, 魏建光, 马媛媛, 等. 超临界二氧化碳在地热开发中的应用研究进展[J]. 应用化工, 2020, 49(6): 1537-1540. doi: 10.3969/j.issn.1671-3206.2020.06.046

    LIU S Z, WEI J G, MA Y Y, et al. Research progress on application of supercritical carbon dioxide in geothermal exploitation[J]. Applied Chemical Industry, 2020, 49(6): 1537-1540. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-3206.2020.06.046
    [7] 秦浩, 汪道兵, 邓雅军, 等. 干热岩人工裂隙内暂堵剂运移规律研究[J]. 工程热物理学报, 2022, 43(9): 2397-2403. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202209015.htm

    QIN H, WANG D B, DENG Y J, et al. Study on transport law of temporary plugging agent in artificial fractures of hot dry rocks[J]. Journal of Engineering Thermophysics, 2022, 43(9): 2397-2403. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202209015.htm
    [8] GIARDINI D. Geothermal quake risks must be faced[J]. Nature, 2009, 462: 848-849. doi: 10.1038/462848a
    [9] LEI Z H, ZHANG Y J, ZHANG S Q, et al. Electricity generation from a three-horizontal-well enhanced geothermal system in the Qiabuqia geothermal field, China: Slickwater fracturing treatments for different reservoir scenarios[J]. Renewable Energy, 2020, 145: 65-83. doi: 10.1016/j.renene.2019.06.024
    [10] ASAI P, PANJA P, MCLENNAN J, et al. Effect of different flow schemes on heat recovery from enhanced geothermal systems (EGS)[J]. Energy, 2019, 175: 667-676. doi: 10.1016/j.energy.2019.03.124
    [11] 单丹丹, 李玮, 闫铁, 等. 增强型地热系统采热性能评价: 以共和盆地恰卜恰地区干热岩储层为例[J]. 天然气工业, 2022, 42(10): 150-160. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202210015.htm

    SHAN D D, LI W, YAN T, et al. Evaluation on heat extraction performance of enhanced geothermal system: A case study of hot-dry rock reservoirs in the Qiabuqia area of the Gonghe Basin[J]. Natural Gas Industry, 2022, 42(10): 150-160. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202210015.htm
    [12] HOFMANN H, BABADAGLI T, YOON J S, et al. A hybrid discrete/finite element modeling study of complex hydraulic fracture development for enhanced geothermal systems (EGS) in granitic basements[J]. Geothermics, 2016, 64: 362-381. doi: 10.1016/j.geothermics.2016.06.016
    [13] 唐宜家, 马天寿, 陈力力, 等. 基于二维裂缝网络数值模拟的干热岩储层热采效率评价[J]. 天然气工业, 2022, 42(4): 94-106. doi: 10.3787/j.issn.1000-0976.2022.04.009

    TANG Y J, MA T S, CHEN L L, et al. Evaluation on the heat extraction efficiency of hot dry rock reservoirs based on two-dimensional fracture network numerical simulation[J]. Natural Gas Industry, 2022, 42(4): 94-106. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2022.04.009
    [14] 何淼, 徐宁宁, 许明标, 等. U型井开发干热岩井筒温度场研究[J]. 热科学与技术, 2023, 22(3): 242-249. https://www.cnki.com.cn/Article/CJFDTOTAL-RKXS202303003.htm

    HE M, XU N N, XU M B, et al. Study of temperature field of U-shaped well for developing dry hot rock[J]. Journal of Thermal Science and Technology, 2023, 22(3): 242-249. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RKXS202303003.htm
    [15] ZHENG J, LI P, DOU B, et al. Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect[J]. Energy, 2022, 255: 124496. doi: 10.1016/j.energy.2022.124496
    [16] 宋国锋, 李根生, 宋先知, 等. 基于多目标的干热岩注采取热性能均衡优化方法[J]. 天然气工业, 2022, 42(4): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202204007.htm

    SONG G F, LI G S, SONG X Z, et al. Multi-objective based balanced optimization method of heat extraction performance of hot dry rock[J]. Natural Gas Industry, 2022, 42(4): 73-84. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202204007.htm
    [17] 冯波, 刘鑫, 张国斌, 等. 单井闭循环地热系统可持续开发潜力数值模拟[J]. 天然气工业, 2020, 40(9): 146-155. doi: 10.3787/j.issn.1000-0976.2020.09.018

    FENG B, LIU X, ZHANG G B, et al. Numerical simulation on the sustainable development potential of a single-well closed-cycle geothermal system[J]. Natural Gas Industry, 2020, 40(9): 146-155. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2020.09.018
    [18] 罗良, 曹文炅, 蒋方明. 增强型地热系统采热的分形分叉网络模型[J]. 工程热物理学报, 2015, 36(2): 388-392. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201502035.htm

    LUO L, CAO W J, JIANG F M. Fractal branch network model of heat extraction in EGS[J]. Journal of Engineering Thermophysics, 2015, 36(2): 388-392. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201502035.htm
    [19] 王天宇, 周小夏, 李根生, 等. 基于热-流-固耦合的多分支径向井地热开发模型及其取热效果分析[J]. 天然气工业, 2023, 43(3): 133-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202303012.htm

    WANG T Y, ZHOU X X, LI G S, et al. Geothermal development model of multilateral radial well and its heat extraction effect analysis based on thermal-hydraulic-mechanical coupling[J]. Natural Gas Industry, 2023, 43(3): 133-144. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202303012.htm
    [20] LI S B, FENG X T, ZHANG D X, et al. Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs[J]. Applied Energy, 2019, 247: 40-59. doi: 10.1016/j.apenergy.2019.04.036
    [21] XIE J X, WANG J S, LIU X L. Performance analysis of pinnate horizontal well in enhanced geothermal system[J]. Applied Thermal Engineering, 2022, 201: 117799. doi: 10.1016/j.applthermaleng.2021.117799
    [22] 杨艳林, 靖晶, 王福刚, 等. CO2增强地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, 35(7): 1130-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201407005.htm

    YANG Y L, JING J, WANG F G, et al. Optimal design of well spacing on CO2 enhanced geothermal[J]. Acta Energiae Solaris Sinica, 2014, 35(7): 1130-1137. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201407005.htm
    [23] ZHANG W, QU Z Q, GUO T K, et al. Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress[J]. Renewable Energy, 2019, 143: 855-871.
    [24] HU X C, BANKS J, GUO Y T, et al. Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production: A numerical investigation[J]. Renewable Energy, 2021, 176: 115-134.
    [25] 丁河嘉. 干热岩压裂储层连续性和周期性采热影响规律研究[D]. 黑龙江大庆: 东北石油大学, 2024.

    DING H J. Study on the mechanism of continuous and periodic thermal recovery of hot dry rock fractured reservoir[D]. Daqing Heilongjiang: Northeast Petroleum University, 2024. (in Chinese with English abstract)
    [26] 巩亮, 韩东旭, 陈峥, 等. 增强型地热系统关键技术研究现状及发展趋势[J]. 天然气工业, 2022, 42(7): 135-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202207016.htm

    GONG L, HAN D X, CHEN Z, et al. Research status and development trend of key technologies for an enhanced geothermal system[J]. Natural Gas Industry, 2022, 42(7): 135-159. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202207016.htm
    [27] 张炜韬, 韩东旭, 李敬法, 等. 增强型地热储层多场耦合数值模拟研究进展[J]. 东北电力大学学报, 2022, 42(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDL202203001.htm

    ZHANG W T, HAN D X, LI J F, et al. Multi-field coupling numerical simulation of enhanced geothermal reservoirs: A review[J]. Journal of Northeast Electric Power University, 2022, 42(3): 1-14. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDL202203001.htm
    [28] RYBACH L. "The future of geothermal energy" and its challenges[C]//Anon. Proceedings World Geothermal Congress. Bali, Indonesia: [s. n.], 2010: 25-29.
    [29] 吴祖松, 王元清, 黄锋, 等. 裂隙岩体开挖渗流原理及工程应用[M]. 北京: 北京理工大学出版社, 2020.

    WU Z S, WANG Y Q, HUANG F, et al. Seepage principle and engineering application in excavation of fractured rock mass[M]. Beijing: Beijing Insititute of Technology Press, 2020. (in Chinese)
    [30] SONG X Z, SHI Y, LI G S, et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells[J]. Applied Energy, 2018, 218: 325-337.
    [31] 张杰, 谢经轩. 多分支井增强型地热开发系统设计及产能评价[J]. 天然气工业, 2021, 41(3): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103027.htm

    ZHANG J, XIE J X. Design and productivity evaluation of multi-lateral well enhanced geothermal development system[J]. Natural Gas Industry, 2021, 41(3): 179-188. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103027.htm
    [32] 郭建春, 任冀川, 王世彬, 等. 裂缝性致密碳酸盐岩储层酸压多场耦合数值模拟与应用[J]. 石油学报, 2020, 41(10): 1219-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202010007.htm

    GUO J C, REN J C, WANG S B, et al. Numerical simulation and application of multi-field coupling of acid fracturing in fractured tight carbonate reservoirs[J]. Acta Petrolei Sinica, 2020, 41(10): 1219-1228. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202010007.htm
    [33] 刘恒伟, 肖鹏, 窦斌, 等. 储层特征对水平井多裂隙增强型地热系统采热过程影响的数值模拟研究[J]. 地质科技通报, 2022, 41(3): 341-348. doi: 10.19509/j.cnki.dzkq.2022.0081

    LIU H W, XIAO P, DOU B, et al. Numerical simulation of influence of reservoir characteristics on heating process of enhanced geothermal system of horizontal well multi fractures[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 341-348. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0081
    [34] LIANG B, JIANG H Q, LI J J, et al. A systematic study of fracture parameters effect on fracture network permeability based on discrete-fracture model employing finite element analyses[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 711-722.
    [35] TENMA N, YAMAGUCHI T, ZYVOLOSKI G. The Hijiori Hot Dry Rock test site, Japan: Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics, 2008, 37(1): 19-52.
    [36] ZHANG L, LI X, ZHANG Y, et al. CO2 injection for geothermal development associated with EGR and geological storage in depleted high-temperature gas reservoirs[J]. Energy, 2017, 123: 139-148.
    [37] ZENG Y C, SU Z, WU N Y. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field[J]. Energy, 2013, 56: 92-107.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  455
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 录用日期:  2024-01-17
  • 修回日期:  2024-01-11

目录

    /

    返回文章
    返回