Prediction method of thin sand reservoir with coal bearing: An example from PB area of Xihu Sag at East China Sea
-
摘要:
在河流-潮汐双向水流控制的沉积环境之下, 西湖凹陷PB地区平湖组含油气地层中普遍发育薄煤层, 煤层导致储层的地震振幅、相位、频率均会发生一定变化。为明确PB地区煤层的发育对储层识别的具体影响以及储层识别的有效手段, 以地震、测井资料为研究基础, 在开展储层叠前、叠后地震响应特征的基础上, 基于去煤层反射系数地震响应特征分析和基于波动方程的叠后地震正演, 在厘清煤层发育对储层特征影响的前提下, 采用岩石物理多参数交会分析, 以探索研究区储层岩性识别的敏感参数、定门槛值。结果表明, 当储层厚度均小于调谐厚度时, 对地震数据进行90°相位旋转, 煤层对储层影响能一定程度地减弱。针对研究区含薄煤层的薄储层, 采用宽频谱反演-叠前
V p/V s-叠前AVO三步走逐级优质储层预测流程, 能较好地刻画研究区含气砂体展布范围。Abstract:In the sedimentary environment shaped by river-tidal bidirectional flow, thin coal seams are typically located within the oil- and gas-bearing strata of the Pinghu Formation in the PB area of the Xihu Sag. These coal seams significantly influence the seismic amplitude, phase, and frequency of the reservoirs.
Objective To betterclarify the specific impact of coal seam development in the PB area on reservoir identification and effective identification techniques,
Methods this paper focuses on analyzing seismic and logging data to evaluate the prestack and poststack seismic response characteristics of the reservoirs. We then investigate the seismic response characteristics of the reflection coefficient after the coal seam is removed and perform poststack seismic forward modeling based on the wave equation. This analysis elucidates the influence of coal seams on seismic responses. Finally, rock physics multiparameter intersection analysis is employed to identify the sensitive parameters and establish the thresh values for reservoir lithology identification within the study area.
Results When the reservoir thickness is less than the tuning thickness, the seismic data can be rotated by 90°, which reduces the impact of the coal seam on the reservoir diminishes.
Conclusion For thin reservoirs with associated thin coal seams in the study area, we adopt a three-step high-quality reservoir prediction process that involves broadband spectrum inversion, specifically prestack
V p/V s and prestack AVOG. This approach allows amore effective description of the distribution range of aerated sand bodies in the study area. -
图 10 平湖组纵横波速度比与纵波阻抗交会分析结果(a, c, e)和纵横波速度比频率直方统计图(b, d, f)
a, b.P2~P6段分析结果;c, d.P7~P11段分析结果;e, f.P12段分析结果;砂组层位见图 1c
Figure 10. Intersection analysis results of P-to-S wave velocity ratio and P-wave impedance in Pinghu Formation, along with a histogram of P-to-S wave velocity ratio
表 1 PB地区已钻井数据统计的岩石物理参数
Table 1. Petrophysical parameters of the statistics of drilled wells in the PB area
参数 砂岩 泥岩 煤层 纵波速度Vp/(m·s-1) 4 100 3 600 3 000 密度DEN/(g·cm-3) 2.45 2.60 2.20 横波速度Vs/(m·s-1) 2 500 2 130 1 730 纵波阻抗AI(g·cm-3·m·s-1) 10 045 9 360 6 600 -
[1] 王红岩, 周祥林, 胡伟, 等. 西湖凹陷平北斜坡带含煤系地层储层预测[J]. 石油物探, 2021, 60(4): 595-603. doi: 10.3969/j.issn.1000-1441.2021.04.008WANG H Y, ZHOU X L, HU W, et al. Prediction of coal-bearing strata reservoir in the Pingbei slope zone of the Xihu Depression[J]. Geophysical Prospecting for Petroleum, 2021, 60(4): 595-603. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1441.2021.04.008 [2] 谢晓军, 熊连桥, 韩雅坤, 等. 西湖凹陷平湖斜坡有利相带内储层非均质性成因新认识[J]. 地球科学, 2024, 49(4): 1400-1410.XIE X J, XIONG L Q, HAN Y K, et al. New insights into reservoirs heterogeneous genesis of favorable facies in Pinghu Formation, Xihu Depression[J]. Earth Science, 2024, 49(4): 1400-1410. (in Chinese with English abstract) [3] 刘晓晨, 陆永潮, 杜学斌, 等. 层序格架约束下的地质统计学反演在薄砂体预测中的应用[J]. 地质科技通报, 2020, 39(3): 99-109. doi: 10.19509/j.cnki.dzkq.2020.0311LIU X C, LU Y C, DU X B, et al. Application of geostatistical inversion constrained by sequence framework in thin-bedded sandbody prediction[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 99-109. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0311 [4] SNYDER C J, KHAN S D, BHATTACHARYA J P, et al. Thin-bedded reservoir analogs in an ancient delta using terrestrial laser scanner and high-resolution ground-based hyperspectral cameras[J]. Sedimentary Geology, 2016, 342: 154-164. doi: 10.1016/j.sedgeo.2016.07.004 [5] WANG P W, JIN Z J, PANG X Q, et al. Characteristics of dual media in tight-sand gas reservoirs and its impact on reservoir quality: A case study of the Jurassic reservoir from the Kuqa Depression, Tarim Basin, Northwest China[J]. Geological Journal, 2018, 53(6): 2558-2568. doi: 10.1002/gj.3091 [6] 秦雪霏, 李巍. 大牛地气田煤系地层去煤影响储层预测技术[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1048-1054.QIN X F, LI W. Research of identification and trimming of coal-bed interference in Daniudi gas field[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 1048-1054. (in Chinese with English abstract) [7] 常锁亮, 张生, 刘晶, 等. 薄互层条件下围岩变化对煤层反射波的影响研究[J]. 煤田地质与勘探, 2021, 49(5): 220-229.CHANG S L, ZHANG S, LIU J, et al. Influence of surrounding rock changes on the coal seam reflected wave under thin interbed condition[J]. Coal Geology & Exploration, 2021, 49(5): 220-229. (in Chinese with English abstract) [8] 乔中林. 彬长地区去除煤层对储层预测影响的方法[J]. 海洋地质前沿, 2018, 34(11): 66-71.QIAO Z L. The method to remove coal seam's influence on oil reservoir prediction: A case from the Binchang area[J]. Marine Geology Frontiers, 2018, 34(11): 66-71. (in Chinese with English abstract) [9] 任建业, 胡祥云, 张俊霞. 中国大陆东部晚中生代构造活化及其演化过程[J]. 大地构造与成矿学, 1998, 22(2): 90-96.REN J Y, HU X Y, ZHANG J X. The Late Mesozoic tectonic activation in the eastern Chinese continent and its evolution process[J]. Geotectonica et Metallogenia, 1998, 22(2): 90-96. (in Chinese with English abstract) [10] 李朝阳, 魏琳, 刁慧, 等. 西湖凹陷孔雀亭构造平湖组油气来源及充注特征[J]. 石油科学通报, 2021, 6(2): 196-208LI C Y, WEI L, DIAO H, et al. Hydrocarbon source and charging characteristics of the Pinghu Formation in the Kongqueting Structure, Xihu Depression[J]. Petroleum Science Bulletin, 2021, 6(2): 196-208. (in Chinese with English abstract) [11] 李居云, 姜波, 屈争辉, 等. 东海西湖凹陷构造演化及控煤作用[J]. 煤田地质与勘探, 2016, 44(5): 22-27.LI J Y, JIANG B, QU Z H, et al. Tectonic evolution and control of coal in Donghai Xihu Sag[J]. Coal Geology & Exploration, 2016, 44(5): 22-27. (in Chinese with English abstract) [12] 闫淑玉, 吴景富, 赵志刚, 等. 西湖凹陷反转构造物理模拟研究[J]. 科学技术与工程, 2016, 16(21): 166-171.YAN S Y, WU J F, ZHAO Z G, et al. Physical modeling of tectonic inversion in the Xihu Sag East China Sea Shelf Basin, China[J]. Science Technology and Engineering, 2016, 16(21): 166-171. (in Chinese with English abstract) [13] 张绍亮, 蒋一鸣. 西湖凹陷平湖斜坡带始新统平湖组层序地层[J]. 海洋地质前沿, 2013, 29(10): 8-13.ZHANG S L, JIANG Y M. High resolution sequence stratigraphy of the Eocene Pinghu Formation, Pinghu slope, Xihu Sag[J]. Marine Geology Frontiers, 2013, 29(10): 8-13. (in Chinese with English abstract) [14] 谢晓军, 熊连桥, 陈莹, 等. 西湖凹陷平湖组低渗储层特征及"甜点"主控因素分析[J]. 科学技术与工程, 2021, 21(30): 12890-12900.XIE X J, XIONG L Q, CHEN Y, et al. Low permeability reservoir characteristics and controlling factors of "sweet points" of Pinghu Formation in Xihu Sag[J]. Science Technology and Engineering, 2021, 21(30): 12890-12900. (in Chinese with English abstract) [15] 蒋一鸣, 邵龙义, 李帅, 等. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究[J]. 现代地质, 2020, 34(1): 141-153.JIANG Y M, SHAO L Y, LI S, et al. Deposition system and stratigraphy of Pinghu Formation in Pinghu tectonic belt, Xihu Sag[J]. Geoscience, 2020, 34(1): 141-153. (in Chinese with English abstract) [16] 吴嘉鹏. 西湖凹陷平湖组潮汐砂脊的发现及意义[J]. 沉积学报, 2016, 34(5): 924-929.WU J P. Discovery of tidal sand ridges and its significance of Pinghu Formation in Xihu Depression[J]. Acta Sedimentologica Sinica, 2016, 34(5): 924-929. (in Chinese with English abstract) [17] 李顺利, 许磊, 于兴河, 等. 东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征[J]. 古地理学报, 2018, 20(6): 1023-1032.LI S L, XU L, YU X H, et al. Marine transgressions and characteristics of tide-dominated sedimentary systems in the Oligocene, Xihu Sag, East China Sea Shelf Basin[J]. Journal of Palaeogeography(Chinese Edition), 2018, 20(6): 1023-1032. (in Chinese with English abstract) [18] 牛华伟, 刘苗, 蒋涔, 等. 东海陆架盆地西湖凹陷平北地区含煤地层岩性圈闭识别[J]. 石油实验地质, 2022, 44(5): 755-760.NIU H W, LIU M, JIANG C, et al. Identification of lithologic trap in coal-bearing stratum of Pingbei area, Xihu Sag, East China Sea Shelf Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 755-760. (in Chinese with English abstract) [19] 于兴河, 李顺利, 曹冰, 等. 西湖凹陷渐新世层序地层格架与沉积充填响应[J]. 沉积学报, 2017, 35(2): 299-314.YU X H, LI S L, CAO B, et al. Oligocene sequence framework and depositional response in the Xihu Depression, East China Sea Shelf Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 299-314. (in Chinese with English abstract) [20] 杨彩虹, 曾广东, 李上卿, 等. 东海西湖凹陷平北地区断裂发育特征与油气聚集[J]. 石油实验地质, 2014, 36(1): 64-69.YANG C H, ZENG G D, LI S Q, et al. Fault development characteristics and hydrocarbon accumulation in Pingbei area of Xihu Sag, East China Sea[J]. Petroleum Geology & Experiment, 2014, 36(1): 64-69. (in Chinese with English abstract) [21] 郑军, 牛华伟, 赵麟. 东海西湖凹陷局部构造钻探效果与油气勘探前景[J]. 海洋石油, 2000, 20(1): 36-41.ZHENG J, NIU H W, ZHAO L. The result of exploratory well and hydrocarbon-exploring prospect in Xihu Trough, the East China Sea[J]. Offshore Oil, 2000, 20(1): 36-41. (in Chinese with English abstract) [22] 关蕴文, 周锋, 蒲仁海, 等. 西湖凹陷平北缓坡带盖层特征及封堵性评价[J]. 海洋地质前沿, 2022, 38(10): 34-41.GUAN Y W, ZHOU F, PU R H, et al. Caprock characteristics and sealing evaluation of Pingbei gentle slope belt in Xihu Sag[J]. Marine Geology Frontiers, 2022, 38(10): 34-41. (in Chinese with English abstract) [23] 唐贤君, 蒋一鸣, 张建培, 等. 东海盆地西湖凹陷平北区断陷层断裂特征及其对圈闭的控制[J]. 海洋地质前沿, 2019, 35(8): 34-43.TANG X J, JIANG Y M, ZHANG J P, et al. Fault characteristic and its control on traps of fault structural layer in the northern Pinghu slope belt, Xihu Sag, East China Sea Shelf Basin[J]. Marine Geology Frontiers, 2019, 35(8): 34-43. (in Chinese with English abstract) [24] 秦兰芝, 谢晶晶, 张武. 西湖凹陷平北区平湖组储层主控因素分析[J]. 长江大学学报(自科版), 2017, 14(19): 13-18.QIN L Z, XIE J J, ZHANG W. The main reservoir controlling factors of Pinghu Formation in Pingbei area of Xihu Sag[J]. Journal of Yangtze University(Natural Science Edition), 2017, 14(19): 13-18. (in Chinese with English abstract) [25] 杨鹏程, 刘峰, 沈珊, 等. 西湖凹陷平北地区平湖组煤系烃源岩生烃潜力研究[J]. 海洋地质与第四纪地质, 2020, 40(4): 139-147.YANG P C, LIU F, SHEN S, et al. A study on the hydrocarbon generation potential of the coal-bearing source rocks in the Pinghu Formation of Pingbei area, the Xihu Depression[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 139-147. (in Chinese with English abstract) [26] 王立歆, 孙振涛, 董月昌. 合成地震记录制作中存在的问题及对策[J]. 勘探地球物理进展, 2007, 30(4): 292-296.WANG L X, SUN Z T, DONG Y C, et al. Influencing factors in making synthetic seismogram and counter measures[J]. Progress in Exploration Geophysics, 2007, 30(4): 292-296. (in Chinese with English abstract) [27] 孙振涛, 孟宪军, 慎国强, 等. 高精度合成地震记录制作技术研究[J]. 石油地球物理勘探, 2002, 37(6): 640-643.SUN Z T, MENG X J, SHEN G Q, et al. The technology of making high-precision synthetic seismogram[J]. Oil Geophysical Prospecting, 2002, 37(6): 640-643. (in Chinese with English abstract) [28] 蒋一鸣, 周倩羽, 李帅, 等. 西湖凹陷西部斜坡带平湖组含煤岩系沉积环境再思考[J]. 中国煤炭地质, 2016, 28(8): 18-25.JIANG Y M, ZHOU Q Y, LI S, et al. Reconsideration of Pinghu Formation coal-bearing rock series sedimentary environment in western slope of Xihu Depression[J]. Coal Geology of China, 2016, 28(8): 18-25. (in Chinese with English abstract) [29] 黄诚, 李鹏飞, 王腾宇, 等. 地震正演模拟技术在深层砂泥岩薄互层地层识别中的应用[J]. 科技通报, 2015, 31(11): 172-176.HUANG C, LI P F, WANG T Y, et al. Application of seismic forward modeling technique in identifying deep sand-shale thin interbeds[J]. Bulletin of Science and Technology, 2015, 31(11): 172-176. (in Chinese with English abstract) [30] 张丹妮. 西湖凹陷A区块致密砂岩储层地震响应研究[J]. 西部探矿工程, 2016, 28(12): 51-54.ZHANG D N. Study on seismic response of tight sandstone reservoir in Block A of Xihu Sag[J]. West-China Exploration Engineering, 2016, 28(12): 51-54. (in Chinese with English abstract) [31] 王晓亮. 正演模拟技术在煤层厚度预测中的应用研究[J]. 西部探矿工程, 2016, 28(1): 151-152.WANG X L. Research on the application of forward modeling technology in coal seam thickness prediction[J]. West-China Exploration Engineering, 2016, 28(1): 151-152. (in Chinese with English abstract) [32] 王韵致, 吴艳梅, 廖光明. 地震正演模拟技术在金湖凹陷SH油田的应用[J]. 石油地质与工程, 2017, 31(1): 44-47.WANG Y Z, WU Y M, LIAO G M. Application of seismic forward modeling technology in SH Oilfield in Jinhu Depression[J]. Petroleum Geology and Engineering, 2017, 31(1): 44-47. (in Chinese with English abstract) [33] 王银, 屈大鹏, 李晓英. 正演模拟技术在地震解释中的应用[J]. 内蒙古石油化工, 2014, 40(10): 71-74.WANG Y, QU D P, LI X Y. Application of forward modeling technology in seismic interpretation[J]. Inner Mongolia Petrochemical Industry, 2014, 40(10): 71-74. (in Chinese with English abstract) [34] 周建科. 波动方程有限元法数值模拟及井震标定研究[D]. 山东青岛: 中国石油大学(华东), 2015.ZHOU J K. Study of numerical simulation of wave equation with finite element method and well to seismic calibration[D]. Qingdao Shandong: China University of Petroleum(East China), 2015. (in Chinese with English abstract) [35] 曾洪流, 朱筱敏, 朱如凯, 等. 陆相坳陷型盆地地震沉积学研究规范[J]. 石油勘探与开发, 2012, 39(3): 275-284.ZENG H L, ZHU X M, ZHU R K, et al. Guidelines for seismic sedimentologic study in non-marine postrift basins[J]. Petroleum Exploration and Development, 2012, 39(3): 275-284. (in Chinese with English abstract) [36] WIDESS M B. How thin is a thin bed?[J]. Geophysics, 1973, 38(6): 1176-1180. [37] HAAS A, DUBRULE O. Geostatistical inversion: A sequential method of stochastic reservoir modelling constrained by seismic data[J]. First Break, 1994, 12(11): 561-569. [38] BOSCH M, MUKERJI T, GONZALEZ E F. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review[J]. Geophysics, 2010, 75(5): 75A165-75A176. [39] BOSCH M, CARVAJAL C, RODRIGUES J, et al. Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir[J]. Geophysics, 2009, 74(2): O1-O15. [40] PORTNIAGUNINE O, CASTAGNA J P. Inverse spectral decomposition[C]//Anon. SEG Technical Program Expanded abstract)s 2004. [S. l. ]: Society of Exploration Geophysicists, 2004. [41] PURYEAR C I, CASTAGNA J P. Layer-thickness determination and stratigraphic interpretation using spectral inversion: Theory and application[J]. Geophysics, 2008, 73(2): R37-R48. [42] CHOPRE S, CASTAGNA J P, PORTNIAGUNINE O. Seismic resolution and thin-bed reflectivity inversion[J]. CSEG Recorder, 2006, 31(1): 19-25. [43] PORTNIAGUNINE O, CASTAGNA J P. Spectral inversion: Lessons from modeling and Boonsville case study[C]//Anon. SEG Technical Program Expanded abstract)s 2004. [S. l. ]: Society of Exploration Geophysicists, 2004. [44] SHUEY R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4): 609.