Failure mechanism of small-scale soil landslide and quantitative evaluation of rain-induced disaster factors in eastern Jiangxi
-
摘要:
为了研究赣东地区典型土质滑坡成因以及对研究区内降雨因子进行稳定性评价。以江西上饶广丰区紫坞滑坡为例, 通过对日降雨量及地表监测位移等数据综合分析并结合GeoStudio有限元软件建立了2D力学模型, 模拟了不同降雨条件下小型残坡积土质滑坡的变形情况; 分析当地降雨特征, 设置了五大工况下4种典型的降雨雨型对比实验, 采用多元线性回归进行数据拟合, 建立了一种I-D-Fs概化评价模型。研究结果表明: (1)土压力与土壤含水率峰值分别为16.8 kPa和16.3%, 降雨初期滑坡土压力与含水率的增加滞后降雨3~5 d; (2)降雨是滑坡发生的主要诱因, 该滑坡发生过程可总结为前缘坡体蠕动-后缘滑体拉裂-坡体整体突滑3个阶段; (3)降雨雨型对滑坡稳定性也起着至关重要作用, 监测预警应分季进行。当日降雨量较小时, 均匀型降雨为其最不利影响型, 较其他雨型, 稳定性系数最大程度下降2%;当日降雨量较大时, 前锋型降雨为其最不利影响型, 较其他雨型, 稳定性系数最大程度下降8%。研究结果可为浅层土质滑坡灾害的监测预警提供科学参考。
Abstract:Objective This study aims to investigate the causes of typical soil landslides in eastern Jiangxi and assess the influence of rainfall on slope stability in the region.
Methods Using the Ziwu landslide in Guangfeng District, Shangrao City, Jiangxi Province as a case study, this paper conducted a comprehensive analysis of rainfall data and surface displacement monitoring. A two-dimensional (2D) mechanical model was established using GeoStudio finite element software to simulate the deformation of small residual slope soil landslides under different rainfall conditions. This study analyzes the local rainfall characteristics, modeled four typical rainfall patterns across five scenarios, applied multiple linear regression to fit the data, and developed an I-D-Fs evaluation model.
Results The results show that (1) the peak values of earth pressure and soil moisture content are 16.8 kPa and 16.3%, respectively, with a 3 to 5 days lag between rainfall onset and the increase in these values during the early stages of rainfall; (2) rainfall is the primary trigger for landslides, which progress through three distinct phases: Creeping of the front slope, pulling of the rear slope, and sudden sliding of the whole slope; and (3) rainfall patterns significantly impact slope stability, necessitating seasonal monitoring and early warning systems. During periods of low rainfall, uniform rainfall is the most detrimental, decreasing the stability coefficients by 2% compared to other patterns. During heave rainfall, frontal rainfall is the most hazardous, decreasing the stability coefficient by 8% compared to other patterns.
Conclusion These results provide a scientific basis for the monitoring and early warning of shallow soil landslides.
-
图 4 监测点孔隙水压力响应曲线(监测点位置见图 3)
Figure 4. Pore water pressure response curve at monitoring points
表 1 边坡模型岩土参数
Table 1. Geotechnical parameters of slope model
岩土层 材料模型 饱和渗透系数
ks/(m·d-1)饱和含水率
θs/(m3·m-3)残余含水率
θr/(m3·m-3)粉质黏土 饱和/非饱和 6×10-7 0.28 0.028 钙质砂岩 饱和/非饱和 2×10-8 0.20 0.020 坚硬砂岩 饱和 1.6×10-8 0.002 0.000 2 表 2 不同降雨工况下滑坡模型岩土体物理力学参数
Table 2. Physical and mechanical parameters of geotechnical materials in landslide model under different rainfall conditions
模拟工况 降雨类型 日降雨量/ mm 岩土层 重度/ (kN·m-3) 黏聚力/ kPa 内摩擦角/ (°) 弹性模量/ kPa 泊松比 工况一 中雨 20 粉质黏土 19 18 16 2×104 0.25 钙质砂岩 23 730 31 2.6×104 0.3 坚硬砂岩 26 2×104 37 2.7×106 0.3 工况二 大雨 60 粉质黏土 20 10 14 1.2×104 0.29 钙质砂岩 24.6 600 25 2.4×104 0.3 坚硬砂岩 26.3 1.8×104 32 2.4×106 0.3 工况三 大暴雨 100 粉质黏土 21.2 3.6 12 3×103 0.35 钙质砂岩 25.6 438 21 2×104 0.3 坚硬砂岩 26.3 1.2×104 24 1.9×106 0.3 注:降雨时长为7 d 表 3 降雨工况设计对照参数
Table 3. Parameters comparison for rainfall condition design
工况 日降雨量/mm 降雨雨型 降雨历时/d 新增工况一 9 4种 14 工况一 20 4种 14 新增工况二 40 4种 14 工况二 60 4种 14 工况三 100 4种 14 注:4种降雨雨型分别为后锋型、中锋型、前锋型、均匀型 表 4 不同降雨雨型I-D-Fs模型多元线性回归拟合统计
Table 4. Multiple linear regression fitting statistics of I-D-Fs models under different rainfall patterns
降雨雨型 I-D-Fs模型多元线性回归拟合 后锋型 Fs=1.401 81-0.001 82×D-0.008 44×I 中峰型 Fs=1.402 81-0.001 91×D-0.008 5×I 前锋型 Fs=1.406 49-0.002 18×D-0.008 61×I 均匀型 Fs=1.406 02-0.002 24×D-0.008 58×I 注: I.降雨强度; D.降雨历时; Fs.安全系数 -
[1] 刘广润, 晏鄂川, 练操. 论滑坡分类[J]. 工程地质学报, 2002, 10(4): 339-342. doi: 10.3969/j.issn.1004-9665.2002.04.001LIU G R, YAN E C, LIAN C. Discussion on classification of landslides[J]. Journal of Engineering Geology, 2002, 10(4): 339-342. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2002.04.001 [2] 梁小鹏, 陈虹举, 燕强珍, 等. 水热变化对季节冻土区牵引式滑坡变形的作用机制: 以2020年8月11日西和县大型滑坡为例[J]. 科学技术与工程, 2022, 22(33): 14626-14634. doi: 10.3969/j.issn.1671-1815.2022.33.010LIANG X P, CHEN H J, YAN Q Z, et al. Action mechanism of hydrothermal variation on traction landslide deformation in seasonally frozen soil regio: A case study of large landslide in Xihe County on August 11, 2020[J]. Science Technology and Engineering, 2022, 22(33): 14626-14634. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2022.33.010 [3] 许艺林, 李远耀, 李思德, 等. 库水位下降叠加降雨作用时堆积层滑坡渗流-变形机制[J]. 地质科技通报, 2024, 43(1): 216-228. doi: 10.19509/j.cnki.dzkq.tb20220417XU Y L, LI Y Y, LI S D, et al. Seepage-deformation mechanism of colluvial landslides under the action of reservoir water level decline and rainfall[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 216-228. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220417 [4] 李媛, 孟晖, 董颖, 等. 中国地质灾害类型及其特征: 基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, 2004, 15(2): 29-34.LI Y, MENG H, DONG Y, et al. Main types and characterisitics of geo-hazard in China: Based on the results of geo-hazard survey in 290 counties[J]. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 29-34. (in Chinese with English abstract) [5] ZHOU K, WANG H, LIAO J X, et al. Deformation and failure mechanism of colluvial landslide under sustained rainfall: A case study of Xinzhan landslide in Tongzi County, China[J]. Alexandria Engineering Journal, 2023, 71: 89-103. doi: 10.1016/j.aej.2023.03.044 [6] 仝德富, 谭飞, 苏爱军, 等. 基于多源数据的谭家湾滑坡变形机制及稳定性评价[J]. 地质科技通报, 2021, 40(4): 162-170. doi: 10.19509/j.cnki.dzkq.2021.0432TONG D F, TAN F, SU A J, et al. Deformation mechanism and stability evaluation of Tanjiawan landslide based on multi-source data[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 162-170. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0432 [7] 周剑, 汤明高, 许强, 等. 重庆市滑坡降雨阈值预警模型[J]. 山地学报, 2022, 40(6): 847-858.ZHOU J, TANG M G, XU Q, et al. Early warning model of rainfall-induced landslide in Chongqing of China based on rainfall threshold[J]. Mountain Research, 2022, 40(6): 847-858. (in Chinese with English abstract) [8] 庞海松, 谢骏锦, 张小明, 等. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J]. 地质科技通报, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153PANG H S, XIE J J, ZHANG X M, et al. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230153 [9] CHO S E. Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability[J]. Engineering Geology, 2014, 171: 11-20. doi: 10.1016/j.enggeo.2013.12.015 [10] 黄晓虎, 易武, 黄海峰, 等. 优势流入渗与坡体变形关系研究及应用[J]. 岩土力学, 2020, 41(4): 1396-1403.HUANG X H, YI W, HUANG H F, et al. Study and application of the relationship between preferential flow penetration and slope deformation[J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403. (in Chinese with English abstract) [11] 唐军峰, 唐雪梅, 肖鹏, 等. 库水位升降与降雨作用下大型滑坡体渗流稳定性分析[J]. 地质科技通报, 2021, 40(4): 153-161. doi: 10.19509/j.cnki.dzkq.2021.0409TANG J F, TANG X M, XIAO P, et al. Analysis of seepage stability of large-scale landslide under water-level fluctuation and rainfall[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 153-161. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0409 [12] JWA M, JIN H G, LEE J, et al. Characteristics of raindrop size distribution in Seoul, South Korea according to rain and weather types[J]. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57(3): 605-617. doi: 10.1007/s13143-020-00219-w [13] ALVIOLI M, GUZZETTI F, ROSSI M, et al. Scaling properties of rainfall induced landslides predicted by a physically based model[J]. Geomorphology, 2014, 213: 38-47. [14] 方正, 李勇, 李海亮. 降雨雨型对滑坡影响的流固耦合数值分析[J]. 人民长江, 2014, 45(15): 67-70.FANG Z, LI Y, LI H L. Study on effect of rainfall type on landslide by fluid-solid coupled numerical simulation[J]. Yangtze River, 2014, 45(15): 67-70. (in Chinese with English abstract) [15] 惠航, 刘锋, 冯兵, 等. 基于PFC2D的柿子树坪滑坡变形特征模拟研究[J]. 科学技术与工程, 2023, 23(3): 973-981.XI H, LIU F, FENG B, et al. Deformation destroys simulation of Shizishuping landslide based on PFC2D[J]. Science Technology and Engineering, 2023, 23(3): 973-981. (in Chinese with English abstract) [16] 刘传正. 累积变形曲线类型与滑坡预测预报[J]. 工程地质学报, 2021, 29(1): 86-95.LIU C Z. Three types of displacement-time curves and early warning of landslides[J]. Journal of Engineering Geology, 2021, 29(1): 86-95. (in Chinese with English abstract) [17] YU L C, YAN C H, GUO S L, et al. Mechanism analysis of Zulongding landslide on gentle piedmont slope: A creeping landslide triggered by rainfall[J]. Natural Hazards, 2023, 118(2): 1211-1234. [18] 张信贵, 许胜才, 易念平. 基于流固耦合理论的饱和-非饱和土开挖边坡稳定性分析[J]. 水利水运工程学报, 2016(3): 10-19.ZHANG X G, XU S C, YI N P. Stability analysis of slopes excavated in saturated and unsaturated soils based on coupled consolidation theories[J]. Hydro-Science and Engineering, 2016(3): 10-19. (in Chinese with English abstract) [19] WEN H J, XIAO J F, WANG X F, et al. Analysis of soil-water characteristics and stability evolution of rainfall-induced landslide: A case of the siwan village landslide[J]. Forests, 2023, 14(4): 808.